预先训练的分子表征使抗菌药物的发现成为可能

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Roberto Olayo-Alarcon, Martin K. Amstalden, Annamaria Zannoni, Medina Bajramovic, Cynthia M. Sharma, Ana Rita Brochado, Mina Rezaei, Christian L. Müller
{"title":"预先训练的分子表征使抗菌药物的发现成为可能","authors":"Roberto Olayo-Alarcon, Martin K. Amstalden, Annamaria Zannoni, Medina Bajramovic, Cynthia M. Sharma, Ana Rita Brochado, Mina Rezaei, Christian L. Müller","doi":"10.1038/s41467-025-58804-4","DOIUrl":null,"url":null,"abstract":"<p>The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of <i>Staphylococcus aureus</i>. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pre-trained molecular representations enable antimicrobial discovery\",\"authors\":\"Roberto Olayo-Alarcon, Martin K. Amstalden, Annamaria Zannoni, Medina Bajramovic, Cynthia M. Sharma, Ana Rita Brochado, Mina Rezaei, Christian L. Müller\",\"doi\":\"10.1038/s41467-025-58804-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of <i>Staphylococcus aureus</i>. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58804-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58804-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

抗菌素耐药性的上升对全世界构成威胁,降低了普通抗生素的疗效。通过实验方法确定新化合物的抗菌活性仍然是耗时和昂贵的。虽然以化合物为中心的深度学习模型有望加速这一搜索和优先排序过程,但目前的策略需要大量的定制训练数据。在这里,我们引入了一种轻量级的抗菌剂发现计算策略,该策略建立在MolE(通过冗余减少嵌入的分子表示)的基础上,这是一种自我监督的深度学习框架,利用未标记的化学结构来学习与任务无关的分子表示。通过将MolE表示学习与现有的、经过实验验证的化合物-细菌活性数据相结合,我们设计了一个通用的预测模型,可以评估化合物的抗菌潜力。我们的模型正确地识别了最近的生长抑制化合物,这些化合物在结构上与目前的抗生素不同。利用这种方法,我们重新发现并实验证实了三种人类靶向药物作为金黄色葡萄球菌的生长抑制剂。这一框架为加速抗生素的发现提供了一个可行的、具有成本效益的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pre-trained molecular representations enable antimicrobial discovery

Pre-trained molecular representations enable antimicrobial discovery

The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of Staphylococcus aureus. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信