Ni Dong, Xiao-Tian Zhang, Qin Tang, Jia-Xin Qian, Qi-Qi Luo, Long Cheng, Tian Cao, Xiang-Wei Liu
{"title":"利用硝基芳烃通过还原C - N偶联流线型合成4 -喹诺酮类药物","authors":"Ni Dong, Xiao-Tian Zhang, Qin Tang, Jia-Xin Qian, Qi-Qi Luo, Long Cheng, Tian Cao, Xiang-Wei Liu","doi":"10.1002/adsc.202500393","DOIUrl":null,"url":null,"abstract":"The synthesis of quinolones is a key technology for the preparation of active pharmaceutical ingredients. Herein we present a step‐economical methodology for streamlined synthesis of 4‐quinolones from a tandem process involving a reduction of nitroarenes, an aza‐Michael addition and an intramolecular Buchwald‐Hartwig amination. This strategy uses synthetically upstream nitroarenes as viable aniline surrogates and B2pin2 as an enabling organic reductant, producing a wide range of 4‐quinolones bearing different functional groups in a step‐economical fashion. The potential value of this protocol is highlighted by late‐stage installation of 4‐quinolone moiety onto bioactive compounds.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"60 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Nitroarenes in Streamlined Synthesis of 4‐Quinolones via Reductive C−N Coupling\",\"authors\":\"Ni Dong, Xiao-Tian Zhang, Qin Tang, Jia-Xin Qian, Qi-Qi Luo, Long Cheng, Tian Cao, Xiang-Wei Liu\",\"doi\":\"10.1002/adsc.202500393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of quinolones is a key technology for the preparation of active pharmaceutical ingredients. Herein we present a step‐economical methodology for streamlined synthesis of 4‐quinolones from a tandem process involving a reduction of nitroarenes, an aza‐Michael addition and an intramolecular Buchwald‐Hartwig amination. This strategy uses synthetically upstream nitroarenes as viable aniline surrogates and B2pin2 as an enabling organic reductant, producing a wide range of 4‐quinolones bearing different functional groups in a step‐economical fashion. The potential value of this protocol is highlighted by late‐stage installation of 4‐quinolone moiety onto bioactive compounds.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202500393\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202500393","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Harnessing Nitroarenes in Streamlined Synthesis of 4‐Quinolones via Reductive C−N Coupling
The synthesis of quinolones is a key technology for the preparation of active pharmaceutical ingredients. Herein we present a step‐economical methodology for streamlined synthesis of 4‐quinolones from a tandem process involving a reduction of nitroarenes, an aza‐Michael addition and an intramolecular Buchwald‐Hartwig amination. This strategy uses synthetically upstream nitroarenes as viable aniline surrogates and B2pin2 as an enabling organic reductant, producing a wide range of 4‐quinolones bearing different functional groups in a step‐economical fashion. The potential value of this protocol is highlighted by late‐stage installation of 4‐quinolone moiety onto bioactive compounds.
期刊介绍:
Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry.
The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.