通过声空化调控石榴石型固态电解质中Li2CO3的绿色策略

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pavitra Srivastava, Behrouz Bazri, Dheeraj Kumar Maurya, Yuan-Ting Hung, Da-Hua Wei* and Ru-Shi Liu*, 
{"title":"通过声空化调控石榴石型固态电解质中Li2CO3的绿色策略","authors":"Pavitra Srivastava,&nbsp;Behrouz Bazri,&nbsp;Dheeraj Kumar Maurya,&nbsp;Yuan-Ting Hung,&nbsp;Da-Hua Wei* and Ru-Shi Liu*,&nbsp;","doi":"10.1021/acsenergylett.5c0036810.1021/acsenergylett.5c00368","DOIUrl":null,"url":null,"abstract":"<p >Garnet-type Li<sub>6.75</sub>La<sub>3</sub>Zr<sub>1.75</sub>Ta<sub>0.25</sub>O<sub>12</sub> (LLZTO) holds significant potential as a solid-state electrolyte (SSE) comprising promising features such as high Li<sup>+</sup> conductivity, wide electrochemical stability window, and compatibility with Li-metal. However, air exposure forms a thick Li<sub>2</sub>CO<sub>3</sub> passivation layer (∼50 nm), which hinders storage, handling, and interfacial performance, especially for LLZTO nanoparticles (NPs) with a high surface area. This study introduces a scalable, green sonication-assisted method to control the Li<sub>2</sub>CO<sub>3</sub> layer thickness (&lt;10 nm), which enhances air stability without compromising ionic conduction. <i>In-situ</i> ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) further reveals the carbonate formation mechanism under atmospheric conditions. Electrochemical tests in ceramic-in-polymer (CIP) and polymer-in-ceramic (PIC) composite polymer electrolytes (CPEs) confirm that regulated Li<sub>2</sub>CO<sub>3</sub> does not degrade the performance of passivated-LLZTO. The chemical-free, green approach suggested in this work maintains electrochemical properties, which enables scalable use of LLZTO-based SSEs for next-generation Li-metal batteries.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 4","pages":"1725–1732 1725–1732"},"PeriodicalIF":18.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.5c00368","citationCount":"0","resultStr":"{\"title\":\"Green Strategy for Li2CO3 Regulation in Garnet-Type Solid-State Electrolytes via Acoustic Cavitation\",\"authors\":\"Pavitra Srivastava,&nbsp;Behrouz Bazri,&nbsp;Dheeraj Kumar Maurya,&nbsp;Yuan-Ting Hung,&nbsp;Da-Hua Wei* and Ru-Shi Liu*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c0036810.1021/acsenergylett.5c00368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Garnet-type Li<sub>6.75</sub>La<sub>3</sub>Zr<sub>1.75</sub>Ta<sub>0.25</sub>O<sub>12</sub> (LLZTO) holds significant potential as a solid-state electrolyte (SSE) comprising promising features such as high Li<sup>+</sup> conductivity, wide electrochemical stability window, and compatibility with Li-metal. However, air exposure forms a thick Li<sub>2</sub>CO<sub>3</sub> passivation layer (∼50 nm), which hinders storage, handling, and interfacial performance, especially for LLZTO nanoparticles (NPs) with a high surface area. This study introduces a scalable, green sonication-assisted method to control the Li<sub>2</sub>CO<sub>3</sub> layer thickness (&lt;10 nm), which enhances air stability without compromising ionic conduction. <i>In-situ</i> ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) further reveals the carbonate formation mechanism under atmospheric conditions. Electrochemical tests in ceramic-in-polymer (CIP) and polymer-in-ceramic (PIC) composite polymer electrolytes (CPEs) confirm that regulated Li<sub>2</sub>CO<sub>3</sub> does not degrade the performance of passivated-LLZTO. The chemical-free, green approach suggested in this work maintains electrochemical properties, which enables scalable use of LLZTO-based SSEs for next-generation Li-metal batteries.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 4\",\"pages\":\"1725–1732 1725–1732\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.5c00368\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00368\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00368","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

石榴石型Li6.75La3Zr1.75Ta0.25O12 (LLZTO)具有高Li+导电性、宽电化学稳定性窗口和与锂金属的相容性等优点,是一种具有重要潜力的固态电解质。然而,空气暴露会形成一个厚的Li2CO3钝化层(~ 50 nm),这阻碍了存储、处理和界面性能,特别是对于具有高表面积的LLZTO纳米颗粒(NPs)。本研究引入了一种可扩展的绿色超声辅助方法来控制Li2CO3层厚度(<10 nm),从而在不影响离子传导的情况下提高空气稳定性。现场环境压力x射线光电子能谱(AP-XPS)进一步揭示了大气条件下碳酸盐的形成机制。在陶瓷-聚合物(CIP)和聚合物-陶瓷(PIC)复合聚合物电解质(CPEs)中进行的电化学测试证实,Li2CO3调控不会降低钝化llzto的性能。这项工作中提出的无化学物质、绿色的方法保持了电化学性能,从而可以在下一代锂金属电池中扩展使用基于llzto的sse。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Strategy for Li2CO3 Regulation in Garnet-Type Solid-State Electrolytes via Acoustic Cavitation

Garnet-type Li6.75La3Zr1.75Ta0.25O12 (LLZTO) holds significant potential as a solid-state electrolyte (SSE) comprising promising features such as high Li+ conductivity, wide electrochemical stability window, and compatibility with Li-metal. However, air exposure forms a thick Li2CO3 passivation layer (∼50 nm), which hinders storage, handling, and interfacial performance, especially for LLZTO nanoparticles (NPs) with a high surface area. This study introduces a scalable, green sonication-assisted method to control the Li2CO3 layer thickness (<10 nm), which enhances air stability without compromising ionic conduction. In-situ ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) further reveals the carbonate formation mechanism under atmospheric conditions. Electrochemical tests in ceramic-in-polymer (CIP) and polymer-in-ceramic (PIC) composite polymer electrolytes (CPEs) confirm that regulated Li2CO3 does not degrade the performance of passivated-LLZTO. The chemical-free, green approach suggested in this work maintains electrochemical properties, which enables scalable use of LLZTO-based SSEs for next-generation Li-metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信