Zoltan Erdős, Susanne J. H. Buiter, Joya Tetreault
{"title":"微大陆强度和基底拆离在增生造山中的作用:来自数值模式的见解","authors":"Zoltan Erdős, Susanne J. H. Buiter, Joya Tetreault","doi":"10.1029/2024JB029509","DOIUrl":null,"url":null,"abstract":"<p>During closure of an ocean through subduction and continental collision, bathymetric highs such as microcontinents can accrete, collide, or partially or completely subduct. Such interaction of future allochthonous terranes (FATs) with the overriding continent will modify the dynamics of the subduction zone, affecting its length and frictional resistance, and thus the force balance of the subduction system. Accreted microcontinents and microcontinental fragments are preserved in backarcs and collisional orogens, demonstrating that multiple terranes can accrete during a single Wilson-cycle, in what is termed accretionary orogenesis. In this study, we use thermo-mechanical numerical experiments of microcontinent-continent collision events to investigate parameters that influence whether microcontinents accrete, subduct, or collide. Our results indicate that multiple accretionary episodes are possible, but that a weak basal detachment layer within each FAT is paramount for such a scenario to occur. The introduction of a microcontinent, or FAT, in the subduction zone will affect the balance between slab-pull, far-field forces, and the subduction interface resistance. The strength (and rheological stratification) of the microcontinent determines the evolution of the subduction interface resistance throughout the collision event, exerting a first order control on the resulting geodynamic scenario. Collision with a strong microcontinent significantly increases the subduction interface resistance promoting terrane subduction and localization of deformation away from the subduction interface. In turn, collision with a weak microcontinent increases subduction interface resistance only mildly, allowing for multiple accretion events.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029509","citationCount":"0","resultStr":"{\"title\":\"The Role of Microcontinent Strength and Basal Detachment in Accretionary Orogenesis: Insights From Numerical Models\",\"authors\":\"Zoltan Erdős, Susanne J. H. Buiter, Joya Tetreault\",\"doi\":\"10.1029/2024JB029509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During closure of an ocean through subduction and continental collision, bathymetric highs such as microcontinents can accrete, collide, or partially or completely subduct. Such interaction of future allochthonous terranes (FATs) with the overriding continent will modify the dynamics of the subduction zone, affecting its length and frictional resistance, and thus the force balance of the subduction system. Accreted microcontinents and microcontinental fragments are preserved in backarcs and collisional orogens, demonstrating that multiple terranes can accrete during a single Wilson-cycle, in what is termed accretionary orogenesis. In this study, we use thermo-mechanical numerical experiments of microcontinent-continent collision events to investigate parameters that influence whether microcontinents accrete, subduct, or collide. Our results indicate that multiple accretionary episodes are possible, but that a weak basal detachment layer within each FAT is paramount for such a scenario to occur. The introduction of a microcontinent, or FAT, in the subduction zone will affect the balance between slab-pull, far-field forces, and the subduction interface resistance. The strength (and rheological stratification) of the microcontinent determines the evolution of the subduction interface resistance throughout the collision event, exerting a first order control on the resulting geodynamic scenario. Collision with a strong microcontinent significantly increases the subduction interface resistance promoting terrane subduction and localization of deformation away from the subduction interface. In turn, collision with a weak microcontinent increases subduction interface resistance only mildly, allowing for multiple accretion events.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029509\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029509\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029509","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Role of Microcontinent Strength and Basal Detachment in Accretionary Orogenesis: Insights From Numerical Models
During closure of an ocean through subduction and continental collision, bathymetric highs such as microcontinents can accrete, collide, or partially or completely subduct. Such interaction of future allochthonous terranes (FATs) with the overriding continent will modify the dynamics of the subduction zone, affecting its length and frictional resistance, and thus the force balance of the subduction system. Accreted microcontinents and microcontinental fragments are preserved in backarcs and collisional orogens, demonstrating that multiple terranes can accrete during a single Wilson-cycle, in what is termed accretionary orogenesis. In this study, we use thermo-mechanical numerical experiments of microcontinent-continent collision events to investigate parameters that influence whether microcontinents accrete, subduct, or collide. Our results indicate that multiple accretionary episodes are possible, but that a weak basal detachment layer within each FAT is paramount for such a scenario to occur. The introduction of a microcontinent, or FAT, in the subduction zone will affect the balance between slab-pull, far-field forces, and the subduction interface resistance. The strength (and rheological stratification) of the microcontinent determines the evolution of the subduction interface resistance throughout the collision event, exerting a first order control on the resulting geodynamic scenario. Collision with a strong microcontinent significantly increases the subduction interface resistance promoting terrane subduction and localization of deformation away from the subduction interface. In turn, collision with a weak microcontinent increases subduction interface resistance only mildly, allowing for multiple accretion events.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.