含Morrey-Hölder零阶项的变分积分的部分正则性,以及Massari正则性定理中的极限指数

IF 1 2区 数学 Q1 MATHEMATICS
Thomas Schmidt, Jule Helena Schütt
{"title":"含Morrey-Hölder零阶项的变分积分的部分正则性,以及Massari正则性定理中的极限指数","authors":"Thomas Schmidt,&nbsp;Jule Helena Schütt","doi":"10.1112/jlms.70139","DOIUrl":null,"url":null,"abstract":"<p>We revisit the partial <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>α</mi>\n </mrow>\n </msup>\n <annotation>$\\mathrm{C}^{1,\\alpha }$</annotation>\n </semantics></math> regularity theory for minimizers of non-parametric integrals with emphasis on sharp dependence of the Hölder exponent <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> on structural assumptions for general zero-order terms. A particular case of our conclusions carries over to the parametric setting of Massari's regularity theorem for prescribed-mean-curvature hypersurfaces and there confirms optimal regularity up to the limit exponent.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70139","citationCount":"0","resultStr":"{\"title\":\"Partial regularity for variational integrals with Morrey–Hölder zero-order terms, and the limit exponent in Massari's regularity theorem\",\"authors\":\"Thomas Schmidt,&nbsp;Jule Helena Schütt\",\"doi\":\"10.1112/jlms.70139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the partial <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>α</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathrm{C}^{1,\\\\alpha }$</annotation>\\n </semantics></math> regularity theory for minimizers of non-parametric integrals with emphasis on sharp dependence of the Hölder exponent <span></span><math>\\n <semantics>\\n <mi>α</mi>\\n <annotation>$\\\\alpha$</annotation>\\n </semantics></math> on structural assumptions for general zero-order terms. A particular case of our conclusions carries over to the parametric setting of Massari's regularity theorem for prescribed-mean-curvature hypersurfaces and there confirms optimal regularity up to the limit exponent.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70139\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70139\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70139","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们再来看看c1部分,α $\ mathm {C}^{1,\ α}$非参数积分极小值的正则性理论,着重于一般零阶项的Hölder指数α $\ α $对结构假设的强烈依赖性。我们的结论的一个特殊情况延续到规定平均曲率超曲面的Massari正则性定理的参数设置,并在那里证实了直到极限指数的最优正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Partial regularity for variational integrals with Morrey–Hölder zero-order terms, and the limit exponent in Massari's regularity theorem

Partial regularity for variational integrals with Morrey–Hölder zero-order terms, and the limit exponent in Massari's regularity theorem

We revisit the partial C 1 , α $\mathrm{C}^{1,\alpha }$ regularity theory for minimizers of non-parametric integrals with emphasis on sharp dependence of the Hölder exponent α $\alpha$ on structural assumptions for general zero-order terms. A particular case of our conclusions carries over to the parametric setting of Massari's regularity theorem for prescribed-mean-curvature hypersurfaces and there confirms optimal regularity up to the limit exponent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信