室内土壤通量测量的分析不确定度表征

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Nicholas Cowan, Pete Levy, Maddalena Tigli, Galina Toteva, Julia Drewer
{"title":"室内土壤通量测量的分析不确定度表征","authors":"Nicholas Cowan,&nbsp;Pete Levy,&nbsp;Maddalena Tigli,&nbsp;Galina Toteva,&nbsp;Julia Drewer","doi":"10.1111/ejss.70104","DOIUrl":null,"url":null,"abstract":"<p>Flux chamber methodologies are used at the global scale to measure the exchange of trace gases between terrestrial surfaces (soils) and the atmosphere. These methods evolved as a simplistic necessity to measure gas fluxes from a time when gas analysers were limited in capability and costs were prohibitively high, since which thousands of studies have deployed a wide variety of chamber methodologies to build vast datasets of soil fluxes. However, analytical limitations of the methods are often overlooked and are poorly understood by the flux community, leading to confusion and misreporting of observations in some cases. In recent years, the number of commercial suppliers of gas analysers claiming to be capable of measuring trace gas fluxes from chambers has drastically increased, with a myriad of analysers (and low-cost sensors) now on offer with a wide variety of capabilities. While chamber designs and the capabilities of analysers vary by orders of magnitude, the rudimentary analytical uncertainties of individual flux measurements can still be standardised for direct comparison of methods. This study aims to serve as a guide to calculate the analytical uncertainty of chamber flux methodologies in a standardised way for direct comparisons. We provide comparisons of a variety of chamber measurement methodologies (closed static and dynamic chamber methods) to highlight the impact of analytical noise, chamber size, enclosure time and number of gas samples. With the associated tools, researchers, commercial suppliers and other stakeholders in the flux community can easily estimate the limitations of a particular methodology to establish and tailor the suitability of particular chambers and instruments to experimental requirements.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70104","citationCount":"0","resultStr":"{\"title\":\"Characterisation of Analytical Uncertainty in Chamber Soil Flux Measurements\",\"authors\":\"Nicholas Cowan,&nbsp;Pete Levy,&nbsp;Maddalena Tigli,&nbsp;Galina Toteva,&nbsp;Julia Drewer\",\"doi\":\"10.1111/ejss.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flux chamber methodologies are used at the global scale to measure the exchange of trace gases between terrestrial surfaces (soils) and the atmosphere. These methods evolved as a simplistic necessity to measure gas fluxes from a time when gas analysers were limited in capability and costs were prohibitively high, since which thousands of studies have deployed a wide variety of chamber methodologies to build vast datasets of soil fluxes. However, analytical limitations of the methods are often overlooked and are poorly understood by the flux community, leading to confusion and misreporting of observations in some cases. In recent years, the number of commercial suppliers of gas analysers claiming to be capable of measuring trace gas fluxes from chambers has drastically increased, with a myriad of analysers (and low-cost sensors) now on offer with a wide variety of capabilities. While chamber designs and the capabilities of analysers vary by orders of magnitude, the rudimentary analytical uncertainties of individual flux measurements can still be standardised for direct comparison of methods. This study aims to serve as a guide to calculate the analytical uncertainty of chamber flux methodologies in a standardised way for direct comparisons. We provide comparisons of a variety of chamber measurement methodologies (closed static and dynamic chamber methods) to highlight the impact of analytical noise, chamber size, enclosure time and number of gas samples. With the associated tools, researchers, commercial suppliers and other stakeholders in the flux community can easily estimate the limitations of a particular methodology to establish and tailor the suitability of particular chambers and instruments to experimental requirements.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"76 2\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70104\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70104","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

通量室方法在全球尺度上用于测量地表(土壤)与大气之间微量气体的交换。当气体分析仪的能力有限且成本过高时,这些方法演变为测量气体通量的简单必要性,从那时起,成千上万的研究已经部署了各种各样的腔室方法来建立大量的土壤通量数据集。然而,这些方法的分析局限性往往被忽视,通量界对其理解不足,在某些情况下导致了观测结果的混淆和误报。近年来,声称能够测量腔室痕量气体通量的气体分析仪的商业供应商数量急剧增加,现在有无数的分析仪(和低成本传感器)提供各种各样的功能。虽然室的设计和分析仪的能力在数量级上有所不同,但单个通量测量的基本分析不确定度仍然可以标准化,以便直接比较方法。本研究旨在以标准化的方式计算室通量方法的分析不确定度,以便进行直接比较。我们提供了各种腔室测量方法(封闭静态和动态腔室方法)的比较,以突出分析噪声,腔室大小,封闭时间和气体样品数量的影响。利用相关工具,研究人员、商业供应商和通量界的其他利益攸关方可以很容易地估计特定方法的局限性,以确定和调整特定腔室和仪器对实验要求的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterisation of Analytical Uncertainty in Chamber Soil Flux Measurements

Characterisation of Analytical Uncertainty in Chamber Soil Flux Measurements

Flux chamber methodologies are used at the global scale to measure the exchange of trace gases between terrestrial surfaces (soils) and the atmosphere. These methods evolved as a simplistic necessity to measure gas fluxes from a time when gas analysers were limited in capability and costs were prohibitively high, since which thousands of studies have deployed a wide variety of chamber methodologies to build vast datasets of soil fluxes. However, analytical limitations of the methods are often overlooked and are poorly understood by the flux community, leading to confusion and misreporting of observations in some cases. In recent years, the number of commercial suppliers of gas analysers claiming to be capable of measuring trace gas fluxes from chambers has drastically increased, with a myriad of analysers (and low-cost sensors) now on offer with a wide variety of capabilities. While chamber designs and the capabilities of analysers vary by orders of magnitude, the rudimentary analytical uncertainties of individual flux measurements can still be standardised for direct comparison of methods. This study aims to serve as a guide to calculate the analytical uncertainty of chamber flux methodologies in a standardised way for direct comparisons. We provide comparisons of a variety of chamber measurement methodologies (closed static and dynamic chamber methods) to highlight the impact of analytical noise, chamber size, enclosure time and number of gas samples. With the associated tools, researchers, commercial suppliers and other stakeholders in the flux community can easily estimate the limitations of a particular methodology to establish and tailor the suitability of particular chambers and instruments to experimental requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信