用于智能给药的工程智能水凝胶

IF 3.1 3区 化学 Q2 POLYMER SCIENCE
Mitra Baghali, Hakimeh Ziyadi, Antonio Di Martino
{"title":"用于智能给药的工程智能水凝胶","authors":"Mitra Baghali,&nbsp;Hakimeh Ziyadi,&nbsp;Antonio Di Martino","doi":"10.1007/s00289-024-05618-x","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogels are a brand new generation of three-dimensional polymeric networks with crosslinking bonds and the potential to hold large amounts of aqueous solvents and biological fluids, which have attracted considerable interest in numerous fields. Smart hydrogels can show reversible volume phase transitions or sol–gel transitions in response to small environmental stimuli. Stimulus-responsive hydrogels are also known as smart or environment-sensitive hydrogels. Generally, stimuli are categorized into three groups: physical (temperature, strain, light, sound, ultrasound, electric and magnetic fields, and mechanical pressure), chemical (pH, solvent composition, chemical species, or ionic energy), and biological (glucose, enzyme, and antigen) situations and stimuli. Based on this kind of responsiveness, smart hydrogels have performed a great role in a wide variety of applications, including remedy, biomedical engineering, and drug delivery systems. The purpose of this study is to investigate the basic concept of smart hydrogels and categorize them based totally on the types of stimulants in drug delivery systems. This review also discusses the structural elements and functional properties of smart hydrogels, their chemical interactions, and the principle variables involved in their structure. Smart hydrogels have great promise as a futuristic drug delivery system, enabling targeted and managed release of healing agents. Their responsiveness to environmental stimuli opens new avenues for particular and personalized treatments, revolutionizing the pharmaceutical sector.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"82 7","pages":"2287 - 2328"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering smart hydrogels for intelligent drug delivery\",\"authors\":\"Mitra Baghali,&nbsp;Hakimeh Ziyadi,&nbsp;Antonio Di Martino\",\"doi\":\"10.1007/s00289-024-05618-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrogels are a brand new generation of three-dimensional polymeric networks with crosslinking bonds and the potential to hold large amounts of aqueous solvents and biological fluids, which have attracted considerable interest in numerous fields. Smart hydrogels can show reversible volume phase transitions or sol–gel transitions in response to small environmental stimuli. Stimulus-responsive hydrogels are also known as smart or environment-sensitive hydrogels. Generally, stimuli are categorized into three groups: physical (temperature, strain, light, sound, ultrasound, electric and magnetic fields, and mechanical pressure), chemical (pH, solvent composition, chemical species, or ionic energy), and biological (glucose, enzyme, and antigen) situations and stimuli. Based on this kind of responsiveness, smart hydrogels have performed a great role in a wide variety of applications, including remedy, biomedical engineering, and drug delivery systems. The purpose of this study is to investigate the basic concept of smart hydrogels and categorize them based totally on the types of stimulants in drug delivery systems. This review also discusses the structural elements and functional properties of smart hydrogels, their chemical interactions, and the principle variables involved in their structure. Smart hydrogels have great promise as a futuristic drug delivery system, enabling targeted and managed release of healing agents. Their responsiveness to environmental stimuli opens new avenues for particular and personalized treatments, revolutionizing the pharmaceutical sector.</p></div>\",\"PeriodicalId\":737,\"journal\":{\"name\":\"Polymer Bulletin\",\"volume\":\"82 7\",\"pages\":\"2287 - 2328\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Bulletin\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00289-024-05618-x\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05618-x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶是具有交联键的新一代三维聚合物网络,具有容纳大量水溶剂和生物流体的潜力,在许多领域引起了人们的极大兴趣。智能水凝胶可以显示可逆的体积相变或溶胶-凝胶转变,以响应小的环境刺激。刺激反应水凝胶也被称为智能或环境敏感水凝胶。一般来说,刺激可分为三大类:物理(温度、应变、光、声、超声、电场和磁场以及机械压力)、化学(pH值、溶剂成分、化学物质或离子能)和生物(葡萄糖、酶和抗原)情况和刺激。基于这种响应性,智能水凝胶在各种各样的应用中发挥了巨大的作用,包括药物治疗、生物医学工程和药物输送系统。本研究的目的是研究智能水凝胶的基本概念,并根据药物输送系统中兴奋剂的类型对其进行分类。本文还讨论了智能水凝胶的结构要素、功能特性、化学相互作用以及影响其结构的主要变量。智能水凝胶作为一种未来的药物输送系统具有很大的前景,可以实现靶向和管理释放愈合剂。它们对环境刺激的反应为特殊和个性化治疗开辟了新的途径,彻底改变了制药行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering smart hydrogels for intelligent drug delivery

Hydrogels are a brand new generation of three-dimensional polymeric networks with crosslinking bonds and the potential to hold large amounts of aqueous solvents and biological fluids, which have attracted considerable interest in numerous fields. Smart hydrogels can show reversible volume phase transitions or sol–gel transitions in response to small environmental stimuli. Stimulus-responsive hydrogels are also known as smart or environment-sensitive hydrogels. Generally, stimuli are categorized into three groups: physical (temperature, strain, light, sound, ultrasound, electric and magnetic fields, and mechanical pressure), chemical (pH, solvent composition, chemical species, or ionic energy), and biological (glucose, enzyme, and antigen) situations and stimuli. Based on this kind of responsiveness, smart hydrogels have performed a great role in a wide variety of applications, including remedy, biomedical engineering, and drug delivery systems. The purpose of this study is to investigate the basic concept of smart hydrogels and categorize them based totally on the types of stimulants in drug delivery systems. This review also discusses the structural elements and functional properties of smart hydrogels, their chemical interactions, and the principle variables involved in their structure. Smart hydrogels have great promise as a futuristic drug delivery system, enabling targeted and managed release of healing agents. Their responsiveness to environmental stimuli opens new avenues for particular and personalized treatments, revolutionizing the pharmaceutical sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Bulletin
Polymer Bulletin 化学-高分子科学
CiteScore
6.00
自引率
6.20%
发文量
0
审稿时长
5.5 months
期刊介绍: "Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad. "Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信