探索钒酸铋纳米颗粒在超级电容器技术中的潜力

IF 4.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Ritika Soni, P. E. Lokhande, Deepak Kumar, Vishal Kadam, Chaitali Jagtap, Udayabhaskar Rednam, Ritika Singh, Kulwinder Singh, Shailesh Padalkar, Bandar Ali Al-Asbahi
{"title":"探索钒酸铋纳米颗粒在超级电容器技术中的潜力","authors":"Ritika Soni,&nbsp;P. E. Lokhande,&nbsp;Deepak Kumar,&nbsp;Vishal Kadam,&nbsp;Chaitali Jagtap,&nbsp;Udayabhaskar Rednam,&nbsp;Ritika Singh,&nbsp;Kulwinder Singh,&nbsp;Shailesh Padalkar,&nbsp;Bandar Ali Al-Asbahi","doi":"10.1007/s11705-025-2542-5","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO<sub>4</sub>) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO<sub>4</sub> compound electrode exhibited a maximum specific capacitance of 893 F·g<sup>−1</sup> at a current density of 0.5 A·g<sup>−1</sup> and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO<sub>4</sub> and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg<sup>−1</sup> at a power density of 600 W·kg<sup>−1</sup> and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology\",\"authors\":\"Ritika Soni,&nbsp;P. E. Lokhande,&nbsp;Deepak Kumar,&nbsp;Vishal Kadam,&nbsp;Chaitali Jagtap,&nbsp;Udayabhaskar Rednam,&nbsp;Ritika Singh,&nbsp;Kulwinder Singh,&nbsp;Shailesh Padalkar,&nbsp;Bandar Ali Al-Asbahi\",\"doi\":\"10.1007/s11705-025-2542-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO<sub>4</sub>) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO<sub>4</sub> compound electrode exhibited a maximum specific capacitance of 893 F·g<sup>−1</sup> at a current density of 0.5 A·g<sup>−1</sup> and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO<sub>4</sub> and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg<sup>−1</sup> at a power density of 600 W·kg<sup>−1</sup> and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2542-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2542-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器因其高功率密度和快速充放电能力而成为一种很有前途的储能技术。在这项研究中,我们采用溶胶-凝胶燃烧法合成了不同摩尔比的钒酸铋(BiVO4),并评估了它们作为超级电容器电极的有效性。晶体学和形态学分析证实了不同相的纳米颗粒的形成。富钒BiVO4复合电极在电流密度为0.5 a·g−1时的最大比电容为893 F·g−1,具有优越的倍率性能。此外,使用富钒BiVO4和活性炭以及凝胶电解质制备的全固态非对称超级电容器在600 W·kg - 1的功率密度下实现了6.66 Wh·kg - 1的能量密度,并且在10000次循环后保持86%的电容保持率。这些结果突出了Bi-V化合物在储能应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the potential of bismuth vanadate nanoparticles in supercapacitor technology

Supercapacitors have attracted significant attention as a promising energy storage technology due to their high power density and rapid charge-discharge capabilities. In this study, we synthesized bismuth vanadate (BiVO4) with varying molar ratios using the sol-gel combustion method and evaluated their effectiveness as supercapacitor electrodes. Crystallographic and morphological analyses confirmed the formation of nanoparticles with different phases. The vanadium-rich BiVO4 compound electrode exhibited a maximum specific capacitance of 893 F·g−1 at a current density of 0.5 A·g−1 and demonstrated superior rate capability. Additionally, an all-solid-state asymmetric supercapacitor, fabricated using vanadium-rich BiVO4 and activated carbon along with a gel electrolyte, achieved an energy density of 6.66 Wh·kg−1 at a power density of 600 W·kg−1 and sustained 86% capacitance retention after 10000 cycles. These results highlight the potential of Bi-V compounds in energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信