城市空中交通的地空异构网络:性能分析

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdullah Abu Zaid;Baha Eddine Youcef Belmekki;Mohamed-Slim Alouini
{"title":"城市空中交通的地空异构网络:性能分析","authors":"Abdullah Abu Zaid;Baha Eddine Youcef Belmekki;Mohamed-Slim Alouini","doi":"10.1109/OJVT.2025.3551209","DOIUrl":null,"url":null,"abstract":"Urban air mobility (UAM) is increasingly capturing the attention of researchers and industry experts, as it holds the promise of providing faster and more economical solutions for urban commuting. Ensuring reliable communication for UAM aircraft is of paramount importance in maintaining operational safety. To that end, we use stochastic geometry tools to analyze the joint uplink-downlink coverage probability of an integrated aerial-terrestrial heterogeneous network (HetNet) for UAM aircraft, specifically electric vertical takeoff and landing (eVTOL) vehicles. We assume eVTOLs travel on predefined air corridors which are modeled as a Poisson line process (PLP). Furthermore, we model the spatial distribution of eVTOLs as a Matern hardcore process (MHCP) with a designated safety distance. We model the aerial base stations (ABSs) as a two-dimensional (2D) binomial point process (BPP), and the terrestrial base stations (TBSs) as a 2D Poisson point process (PPP). We use a suitable air-to-ground channel model to include line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. In the paper, we derive distance distributions to the closest ABS, LOS TBS, and NLOS TBS to a typical eVTOL, then we provide the association probability of each BS. Furthermore, we characterize the uplink interference and derive Laplace transforms for the PLP-MHCP distributed eVTOLs. Finally, we derive the coverage probability of the overall HetNet and carry out Monte Carlo simulations to validate our expressions.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"912-926"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10925893","citationCount":"0","resultStr":"{\"title\":\"Aerial-Terrestrial Heterogeneous Networks for Urban Air Mobility: A Performance Analysis\",\"authors\":\"Abdullah Abu Zaid;Baha Eddine Youcef Belmekki;Mohamed-Slim Alouini\",\"doi\":\"10.1109/OJVT.2025.3551209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban air mobility (UAM) is increasingly capturing the attention of researchers and industry experts, as it holds the promise of providing faster and more economical solutions for urban commuting. Ensuring reliable communication for UAM aircraft is of paramount importance in maintaining operational safety. To that end, we use stochastic geometry tools to analyze the joint uplink-downlink coverage probability of an integrated aerial-terrestrial heterogeneous network (HetNet) for UAM aircraft, specifically electric vertical takeoff and landing (eVTOL) vehicles. We assume eVTOLs travel on predefined air corridors which are modeled as a Poisson line process (PLP). Furthermore, we model the spatial distribution of eVTOLs as a Matern hardcore process (MHCP) with a designated safety distance. We model the aerial base stations (ABSs) as a two-dimensional (2D) binomial point process (BPP), and the terrestrial base stations (TBSs) as a 2D Poisson point process (PPP). We use a suitable air-to-ground channel model to include line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. In the paper, we derive distance distributions to the closest ABS, LOS TBS, and NLOS TBS to a typical eVTOL, then we provide the association probability of each BS. Furthermore, we characterize the uplink interference and derive Laplace transforms for the PLP-MHCP distributed eVTOLs. Finally, we derive the coverage probability of the overall HetNet and carry out Monte Carlo simulations to validate our expressions.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"912-926\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10925893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10925893/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10925893/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

城市空中交通(UAM)越来越受到研究人员和行业专家的关注,因为它有望为城市通勤提供更快、更经济的解决方案。确保UAM飞机的可靠通信对维护操作安全至关重要。为此,我们使用随机几何工具来分析UAM飞机(特别是电动垂直起降(eVTOL)车辆)的综合地空异构网络(HetNet)的联合上行-下行覆盖概率。我们假设evtol在预定义的空气走廊上行驶,该走廊被建模为泊松线过程(PLP)。此外,我们将eVTOLs的空间分布建模为具有指定安全距离的母核过程(MHCP)。我们将空中基站(ABSs)建模为二维(2D)二项点过程(BPP),将地面基站(tss)建模为二维泊松点过程(PPP)。我们使用合适的空对地信道模型来包括视距(LOS)和非视距(NLOS)传输。在本文中,我们推导了一个典型eVTOL到最近的ABS、LOS TBS和NLOS TBS的距离分布,然后给出了每个BS的关联概率。此外,我们描述了PLP-MHCP分布式evols的上行干扰,并推导了其拉普拉斯变换。最后,我们推导了整个HetNet的覆盖概率,并进行了蒙特卡罗模拟来验证我们的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerial-Terrestrial Heterogeneous Networks for Urban Air Mobility: A Performance Analysis
Urban air mobility (UAM) is increasingly capturing the attention of researchers and industry experts, as it holds the promise of providing faster and more economical solutions for urban commuting. Ensuring reliable communication for UAM aircraft is of paramount importance in maintaining operational safety. To that end, we use stochastic geometry tools to analyze the joint uplink-downlink coverage probability of an integrated aerial-terrestrial heterogeneous network (HetNet) for UAM aircraft, specifically electric vertical takeoff and landing (eVTOL) vehicles. We assume eVTOLs travel on predefined air corridors which are modeled as a Poisson line process (PLP). Furthermore, we model the spatial distribution of eVTOLs as a Matern hardcore process (MHCP) with a designated safety distance. We model the aerial base stations (ABSs) as a two-dimensional (2D) binomial point process (BPP), and the terrestrial base stations (TBSs) as a 2D Poisson point process (PPP). We use a suitable air-to-ground channel model to include line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. In the paper, we derive distance distributions to the closest ABS, LOS TBS, and NLOS TBS to a typical eVTOL, then we provide the association probability of each BS. Furthermore, we characterize the uplink interference and derive Laplace transforms for the PLP-MHCP distributed eVTOLs. Finally, we derive the coverage probability of the overall HetNet and carry out Monte Carlo simulations to validate our expressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信