石墨烯/硅肖特基结光电探测器的带宽特性

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wangheng Pan;Zongwen Li;Anran Wang;Pengfei Zhao;Hu Chen;Zhixiang Zhang;Yi Shi;Yang Xu;Fengqiu Wang
{"title":"石墨烯/硅肖特基结光电探测器的带宽特性","authors":"Wangheng Pan;Zongwen Li;Anran Wang;Pengfei Zhao;Hu Chen;Zhixiang Zhang;Yi Shi;Yang Xu;Fengqiu Wang","doi":"10.1109/LPT.2025.3556025","DOIUrl":null,"url":null,"abstract":"Graphene/silicon (Gr/Si) heterostructure has emerged as a promising approach for high-performance broadband photodetectors. However, it is often the case that devices of similar structures exhibit bandwidths that differ by orders of magnitude. Moreover, the relatively large photosensitive area combined with multiple operation modes make it imperative to understand the in-plane bandwidth characteristics of such devices. Here, we conducted a thorough investigation of the in-plane bandwidth distribution and the focal-condition-dependent bandwidth characteristics in an exemplar Gr/Si Schottky-junction photodetector with a large lateral dimension (<inline-formula> <tex-math>$\\sim 640~\\mu $ </tex-math></inline-formula>m). It is found that the bandwidth as deduced by the 0.35/<inline-formula> <tex-math>$\\tau _{\\mathrm {FWHM}}$ </tex-math></inline-formula> method can better depict the high-frequency transient response of the device than the more conventional S21 bandwidth. Additionally, influence of illumination area and excitation power density on the response time has been characterized. Our study helps clarify two commonly used bandwidth figures of merit, and suggests that more analysis of the in-plane bandwidth characteristics may lead to updated design guidelines for photosensitive devices.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 8","pages":"485-488"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandwidth Characteristics of a Graphene/Silicon Schottky-Junction Photodetector\",\"authors\":\"Wangheng Pan;Zongwen Li;Anran Wang;Pengfei Zhao;Hu Chen;Zhixiang Zhang;Yi Shi;Yang Xu;Fengqiu Wang\",\"doi\":\"10.1109/LPT.2025.3556025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene/silicon (Gr/Si) heterostructure has emerged as a promising approach for high-performance broadband photodetectors. However, it is often the case that devices of similar structures exhibit bandwidths that differ by orders of magnitude. Moreover, the relatively large photosensitive area combined with multiple operation modes make it imperative to understand the in-plane bandwidth characteristics of such devices. Here, we conducted a thorough investigation of the in-plane bandwidth distribution and the focal-condition-dependent bandwidth characteristics in an exemplar Gr/Si Schottky-junction photodetector with a large lateral dimension (<inline-formula> <tex-math>$\\\\sim 640~\\\\mu $ </tex-math></inline-formula>m). It is found that the bandwidth as deduced by the 0.35/<inline-formula> <tex-math>$\\\\tau _{\\\\mathrm {FWHM}}$ </tex-math></inline-formula> method can better depict the high-frequency transient response of the device than the more conventional S21 bandwidth. Additionally, influence of illumination area and excitation power density on the response time has been characterized. Our study helps clarify two commonly used bandwidth figures of merit, and suggests that more analysis of the in-plane bandwidth characteristics may lead to updated design guidelines for photosensitive devices.\",\"PeriodicalId\":13065,\"journal\":{\"name\":\"IEEE Photonics Technology Letters\",\"volume\":\"37 8\",\"pages\":\"485-488\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945888/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945888/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯/硅(Gr/Si)异质结构已成为高性能宽带光电探测器的一种很有前途的方法。然而,通常情况下,类似结构的器件表现出不同数量级的带宽。此外,相对较大的光敏面积加上多种工作模式,使得了解此类器件的面内带宽特性势在必行。在此,我们对一个典型的横向尺寸为$\sim 640~\mu $ m的Gr/Si schottkey结光电探测器的平面内带宽分布和与聚焦条件相关的带宽特性进行了深入的研究,发现用0.35/ $\tau _{\mathrm {FWHM}}$方法推导出的带宽比传统的S21带宽更能描述器件的高频瞬态响应。此外,还研究了光照面积和激励功率密度对响应时间的影响。我们的研究有助于澄清两种常用的带宽值,并建议对平面内带宽特性进行更多的分析,可能会导致更新光敏器件的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bandwidth Characteristics of a Graphene/Silicon Schottky-Junction Photodetector
Graphene/silicon (Gr/Si) heterostructure has emerged as a promising approach for high-performance broadband photodetectors. However, it is often the case that devices of similar structures exhibit bandwidths that differ by orders of magnitude. Moreover, the relatively large photosensitive area combined with multiple operation modes make it imperative to understand the in-plane bandwidth characteristics of such devices. Here, we conducted a thorough investigation of the in-plane bandwidth distribution and the focal-condition-dependent bandwidth characteristics in an exemplar Gr/Si Schottky-junction photodetector with a large lateral dimension ( $\sim 640~\mu $ m). It is found that the bandwidth as deduced by the 0.35/ $\tau _{\mathrm {FWHM}}$ method can better depict the high-frequency transient response of the device than the more conventional S21 bandwidth. Additionally, influence of illumination area and excitation power density on the response time has been characterized. Our study helps clarify two commonly used bandwidth figures of merit, and suggests that more analysis of the in-plane bandwidth characteristics may lead to updated design guidelines for photosensitive devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信