{"title":"超弱紧算子的定量自对偶性","authors":"Kun Tu","doi":"10.1016/j.jmaa.2025.129568","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that a bounded linear operator <em>T</em> between Banach spaces <em>X</em> and <em>Y</em> is super weakly compact if and only if so is its dual <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> so that the quotient norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is not equivalent to <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>. Above <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> stand for the collections of bounded linear operators and super weakly compact operators between <em>X</em> and <em>Y</em>, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129568"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On quantitative self-duality of super weakly compact operators\",\"authors\":\"Kun Tu\",\"doi\":\"10.1016/j.jmaa.2025.129568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well known that a bounded linear operator <em>T</em> between Banach spaces <em>X</em> and <em>Y</em> is super weakly compact if and only if so is its dual <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>. We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> so that the quotient norm <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> is not equivalent to <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>‖</mo></mrow><mrow><mi>S</mi></mrow></msub></math></span> induced by <span><math><mi>L</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>/</mo><mi>S</mi><mo>(</mo><msup><mrow><mi>Y</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span>. Above <span><math><mi>L</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> and <span><math><mi>S</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>)</mo></math></span> stand for the collections of bounded linear operators and super weakly compact operators between <em>X</em> and <em>Y</em>, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129568\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X2500349X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X2500349X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On quantitative self-duality of super weakly compact operators
It is well known that a bounded linear operator T between Banach spaces X and Y is super weakly compact if and only if so is its dual . We study the quantitative version of this implication. The paper contains a counterexample showing that the super weak essential norms of a bounded linear operator and its dual are not equivalent. In detail, we construct a sequence of bounded linear operators so that the quotient norm induced by is not equivalent to induced by . Above and stand for the collections of bounded linear operators and super weakly compact operators between X and Y, respectively. Our counterexample is derived from the Johnson-Lindenstrauss space.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.