不同温度下乙腈与三氯乙烯或四氯乙烯二元混合物热力学性质的实验和计算见解

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Hadi Taheri Parsa , Hossein Iloukhani , Khatereh Khanlarzadeh
{"title":"不同温度下乙腈与三氯乙烯或四氯乙烯二元混合物热力学性质的实验和计算见解","authors":"Hadi Taheri Parsa ,&nbsp;Hossein Iloukhani ,&nbsp;Khatereh Khanlarzadeh","doi":"10.1016/j.cjche.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>Density (<em>ρ</em>), speed of sound (<em>u</em>), viscosity (<em>η</em>), and refractive index (<em>n</em><sub>D</sub>) were measured for pure acetonitrile, trichloroethene, and tetrachloroethene, as well as their binary mixtures at temperatures <em>T</em> = (293.15, 298.15, 303.15) K and at ambient pressure (81.5 kPa). From the experimental data, excess molar volume (<span><math><mrow><msubsup><mi>V</mi><mi>m</mi><mi>E</mi></msubsup></mrow></math></span>), thermal expansion coefficients (<em>α</em>), deviations in isentropic compressibility (<span><math><mrow><mo>Δ</mo><msub><mi>κ</mi><mi>s</mi></msub></mrow></math></span>), viscosity (Δ<em>η</em>), and refractive index (Δ<em>n</em><sub>D</sub>) were calculated. These values were then correlated using the Redlich-Kister polynomial equation, with fitting coefficients and standard deviations determined. Additionally, the Prigogine-Flory-Patterson (PFP) theory and the Extended Real Associated Solution (ERAS) model were employed to correlate the excess molar volume, while the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) was used to predict the density of mixtures.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"80 ","pages":"Pages 328-340"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and computational insight in thermodynamic properties of binary mixtures of acetonitrile with trichloroethene or tetrachloroethene at different temperatures\",\"authors\":\"Hadi Taheri Parsa ,&nbsp;Hossein Iloukhani ,&nbsp;Khatereh Khanlarzadeh\",\"doi\":\"10.1016/j.cjche.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Density (<em>ρ</em>), speed of sound (<em>u</em>), viscosity (<em>η</em>), and refractive index (<em>n</em><sub>D</sub>) were measured for pure acetonitrile, trichloroethene, and tetrachloroethene, as well as their binary mixtures at temperatures <em>T</em> = (293.15, 298.15, 303.15) K and at ambient pressure (81.5 kPa). From the experimental data, excess molar volume (<span><math><mrow><msubsup><mi>V</mi><mi>m</mi><mi>E</mi></msubsup></mrow></math></span>), thermal expansion coefficients (<em>α</em>), deviations in isentropic compressibility (<span><math><mrow><mo>Δ</mo><msub><mi>κ</mi><mi>s</mi></msub></mrow></math></span>), viscosity (Δ<em>η</em>), and refractive index (Δ<em>n</em><sub>D</sub>) were calculated. These values were then correlated using the Redlich-Kister polynomial equation, with fitting coefficients and standard deviations determined. Additionally, the Prigogine-Flory-Patterson (PFP) theory and the Extended Real Associated Solution (ERAS) model were employed to correlate the excess molar volume, while the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) was used to predict the density of mixtures.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":\"80 \",\"pages\":\"Pages 328-340\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124003768\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124003768","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental and computational insight in thermodynamic properties of binary mixtures of acetonitrile with trichloroethene or tetrachloroethene at different temperatures

Experimental and computational insight in thermodynamic properties of binary mixtures of acetonitrile with trichloroethene or tetrachloroethene at different temperatures
Density (ρ), speed of sound (u), viscosity (η), and refractive index (nD) were measured for pure acetonitrile, trichloroethene, and tetrachloroethene, as well as their binary mixtures at temperatures T = (293.15, 298.15, 303.15) K and at ambient pressure (81.5 kPa). From the experimental data, excess molar volume (VmE), thermal expansion coefficients (α), deviations in isentropic compressibility (Δκs), viscosity (Δη), and refractive index (ΔnD) were calculated. These values were then correlated using the Redlich-Kister polynomial equation, with fitting coefficients and standard deviations determined. Additionally, the Prigogine-Flory-Patterson (PFP) theory and the Extended Real Associated Solution (ERAS) model were employed to correlate the excess molar volume, while the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) was used to predict the density of mixtures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信