具有最大k-团隔离数的图的一个表征

IF 0.7 3区 数学 Q2 MATHEMATICS
Siyue Chen, Qing Cui, Lingping Zhong
{"title":"具有最大k-团隔离数的图的一个表征","authors":"Siyue Chen,&nbsp;Qing Cui,&nbsp;Lingping Zhong","doi":"10.1016/j.disc.2025.114531","DOIUrl":null,"url":null,"abstract":"<div><div>For any positive integer <em>k</em> and any graph <em>G</em>, a subset <em>D</em> of vertices of <em>G</em> is called a <em>k</em>-clique isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> does not contain <em>k</em>-clique as a subgraph. The <em>k</em>-clique isolation number of <em>G</em>, denoted by <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>, is the minimum cardinality of a <em>k</em>-clique isolating set of <em>G</em>. Borg, Fenech and Kaemawichanurat (Discrete Math. 343 (2020) 111879) proved that if <em>G</em> is a connected <em>n</em>-vertex graph, then <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> unless <em>G</em> is a <em>k</em>-clique, or <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is a 5-cycle. At the end of their paper, Borg, Fenech and Kaemawichanurat asked for a characterization of all connected <em>n</em>-vertex graphs <em>G</em> such that <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>. An old result of Payan and Xuong, and independently of Fink et al., in the 1980s has already answered this problem for the case <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>. Very recently, the case when <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> was solved by Boyer and Goddard, and the case when <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span> was solved by the first two authors of the present paper and Zhang. In this paper, we solve all the remaining cases. We show that except an infinite family of graphs, there are exactly 7 such graphs when <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span> and exactly <span><math><mi>k</mi><mo>+</mo><mn>2</mn></math></span> such graphs when <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 9","pages":"Article 114531"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of graphs with maximum k-clique isolation number\",\"authors\":\"Siyue Chen,&nbsp;Qing Cui,&nbsp;Lingping Zhong\",\"doi\":\"10.1016/j.disc.2025.114531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any positive integer <em>k</em> and any graph <em>G</em>, a subset <em>D</em> of vertices of <em>G</em> is called a <em>k</em>-clique isolating set of <em>G</em> if <span><math><mi>G</mi><mo>−</mo><mi>N</mi><mo>[</mo><mi>D</mi><mo>]</mo></math></span> does not contain <em>k</em>-clique as a subgraph. The <em>k</em>-clique isolation number of <em>G</em>, denoted by <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>, is the minimum cardinality of a <em>k</em>-clique isolating set of <em>G</em>. Borg, Fenech and Kaemawichanurat (Discrete Math. 343 (2020) 111879) proved that if <em>G</em> is a connected <em>n</em>-vertex graph, then <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span> unless <em>G</em> is a <em>k</em>-clique, or <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is a 5-cycle. At the end of their paper, Borg, Fenech and Kaemawichanurat asked for a characterization of all connected <em>n</em>-vertex graphs <em>G</em> such that <span><math><mi>ι</mi><mo>(</mo><mi>G</mi><mo>,</mo><mi>k</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></math></span>. An old result of Payan and Xuong, and independently of Fink et al., in the 1980s has already answered this problem for the case <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>. Very recently, the case when <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> was solved by Boyer and Goddard, and the case when <span><math><mi>k</mi><mo>=</mo><mn>3</mn></math></span> was solved by the first two authors of the present paper and Zhang. In this paper, we solve all the remaining cases. We show that except an infinite family of graphs, there are exactly 7 such graphs when <span><math><mi>k</mi><mo>=</mo><mn>4</mn></math></span> and exactly <span><math><mi>k</mi><mo>+</mo><mn>2</mn></math></span> such graphs when <span><math><mi>k</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 9\",\"pages\":\"Article 114531\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001396\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001396","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意正整数 k 和任意图 G,如果 G-N[D] 不包含 k-clique 子图,则 G 的顶点子集 D 称为 G 的 k-clique 隔离集。G 的 k-clique 隔离数用 ι(G,k) 表示,是 G 的 k-clique 隔离集的最小心数。343 (2020) 111879)证明,如果 G 是连通的 n 个顶点图,那么ι(G,k)≤nk+1,除非 G 是一个 k-clique,或者 k=2 且 G 是一个 5 循环。在论文的最后,博格、费内奇和凯玛维查努拉特要求对所有连通的 n 顶点图 G 进行表征,使得 ι(G,k)=nk+1 。20 世纪 80 年代,Payan 和 Xuong 的一个古老结果,以及 Fink 等人的独立结果,已经回答了 k=1 情况下的这一问题。最近,Boyer 和 Goddard 解决了 k=2 的情况,本文前两位作者和 Zhang 解决了 k=3 的情况。在本文中,我们解决了其余所有情况。我们证明,除了一个无限图族,当 k=4 时正好有 7 个这样的图,当 k≥5 时正好有 k+2 个这样的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of graphs with maximum k-clique isolation number
For any positive integer k and any graph G, a subset D of vertices of G is called a k-clique isolating set of G if GN[D] does not contain k-clique as a subgraph. The k-clique isolation number of G, denoted by ι(G,k), is the minimum cardinality of a k-clique isolating set of G. Borg, Fenech and Kaemawichanurat (Discrete Math. 343 (2020) 111879) proved that if G is a connected n-vertex graph, then ι(G,k)nk+1 unless G is a k-clique, or k=2 and G is a 5-cycle. At the end of their paper, Borg, Fenech and Kaemawichanurat asked for a characterization of all connected n-vertex graphs G such that ι(G,k)=nk+1. An old result of Payan and Xuong, and independently of Fink et al., in the 1980s has already answered this problem for the case k=1. Very recently, the case when k=2 was solved by Boyer and Goddard, and the case when k=3 was solved by the first two authors of the present paper and Zhang. In this paper, we solve all the remaining cases. We show that except an infinite family of graphs, there are exactly 7 such graphs when k=4 and exactly k+2 such graphs when k5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信