关于火星盖尔陨坑波纹状阿马帕里标记带水和金属通量的假设

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
E.S. Kite , P. Gasda , C.J. Tino , C. Weitz , L. Thompson , B.M. Tutolo , C.A. Mondro , W.H. Farrand , S. Gupta , J. Schieber , W.E. Dietrich , N. Mangold , K.W. Lewis , R.S. Sletten
{"title":"关于火星盖尔陨坑波纹状阿马帕里标记带水和金属通量的假设","authors":"E.S. Kite ,&nbsp;P. Gasda ,&nbsp;C.J. Tino ,&nbsp;C. Weitz ,&nbsp;L. Thompson ,&nbsp;B.M. Tutolo ,&nbsp;C.A. Mondro ,&nbsp;W.H. Farrand ,&nbsp;S. Gupta ,&nbsp;J. Schieber ,&nbsp;W.E. Dietrich ,&nbsp;N. Mangold ,&nbsp;K.W. Lewis ,&nbsp;R.S. Sletten","doi":"10.1016/j.epsl.2025.119347","DOIUrl":null,"url":null,"abstract":"<div><div>Early Mars was habitable, at least intermittently, but major questions remain about how much water flowed and for how long. The paleoclimate evolution of Mars is captured by the stratigraphic record in Gale crater (Milliken et al. 2010). Climbing through mostly aeolian deposits reflecting arid conditions within Gale crater, the Mars Science Laboratory <em>Curiosity</em> rover encountered wave-rippled lake sediments of the basin-spanning Amapari Marker Band (AMB) that have very high metal enrichments (Fe, Mn, Zn). What caused the association between relatively wet primary depositional environment, and metal enrichment? Tentative, but reasonable extrapolation of rover metal data across the AMB suggests an excess Fe mass of 0.2 Gt. Transporting this Fe likely required ∼10,000 km<sup>3</sup> of water flow, much more than the volume of the lake, across &gt;10<sup>3</sup> yr. Deposition of the Fe could be due to a redox or pH front within or just beneath the lake. One possible basin-scale synthesis involves a climate excursion consisting of initial cooling then subsequent warming: initial cooling permits wind scour in Gale basin and ice build-up on Gale's rim, while subsequent melting fills the lake and mobilizes Fe. Alternatively, the data can be explained by water-table fluctuations. In either case, the metal enrichment likely contributed to the hardness of these rocks, aiding wave-ripple preservation.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"660 ","pages":"Article 119347"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypotheses for the water and metal fluxes to the rippled Amapari Marker Band, Gale Crater, Mars\",\"authors\":\"E.S. Kite ,&nbsp;P. Gasda ,&nbsp;C.J. Tino ,&nbsp;C. Weitz ,&nbsp;L. Thompson ,&nbsp;B.M. Tutolo ,&nbsp;C.A. Mondro ,&nbsp;W.H. Farrand ,&nbsp;S. Gupta ,&nbsp;J. Schieber ,&nbsp;W.E. Dietrich ,&nbsp;N. Mangold ,&nbsp;K.W. Lewis ,&nbsp;R.S. Sletten\",\"doi\":\"10.1016/j.epsl.2025.119347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Early Mars was habitable, at least intermittently, but major questions remain about how much water flowed and for how long. The paleoclimate evolution of Mars is captured by the stratigraphic record in Gale crater (Milliken et al. 2010). Climbing through mostly aeolian deposits reflecting arid conditions within Gale crater, the Mars Science Laboratory <em>Curiosity</em> rover encountered wave-rippled lake sediments of the basin-spanning Amapari Marker Band (AMB) that have very high metal enrichments (Fe, Mn, Zn). What caused the association between relatively wet primary depositional environment, and metal enrichment? Tentative, but reasonable extrapolation of rover metal data across the AMB suggests an excess Fe mass of 0.2 Gt. Transporting this Fe likely required ∼10,000 km<sup>3</sup> of water flow, much more than the volume of the lake, across &gt;10<sup>3</sup> yr. Deposition of the Fe could be due to a redox or pH front within or just beneath the lake. One possible basin-scale synthesis involves a climate excursion consisting of initial cooling then subsequent warming: initial cooling permits wind scour in Gale basin and ice build-up on Gale's rim, while subsequent melting fills the lake and mobilizes Fe. Alternatively, the data can be explained by water-table fluctuations. In either case, the metal enrichment likely contributed to the hardness of these rocks, aiding wave-ripple preservation.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"660 \",\"pages\":\"Article 119347\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X25001463\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25001463","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypotheses for the water and metal fluxes to the rippled Amapari Marker Band, Gale Crater, Mars
Early Mars was habitable, at least intermittently, but major questions remain about how much water flowed and for how long. The paleoclimate evolution of Mars is captured by the stratigraphic record in Gale crater (Milliken et al. 2010). Climbing through mostly aeolian deposits reflecting arid conditions within Gale crater, the Mars Science Laboratory Curiosity rover encountered wave-rippled lake sediments of the basin-spanning Amapari Marker Band (AMB) that have very high metal enrichments (Fe, Mn, Zn). What caused the association between relatively wet primary depositional environment, and metal enrichment? Tentative, but reasonable extrapolation of rover metal data across the AMB suggests an excess Fe mass of 0.2 Gt. Transporting this Fe likely required ∼10,000 km3 of water flow, much more than the volume of the lake, across >103 yr. Deposition of the Fe could be due to a redox or pH front within or just beneath the lake. One possible basin-scale synthesis involves a climate excursion consisting of initial cooling then subsequent warming: initial cooling permits wind scour in Gale basin and ice build-up on Gale's rim, while subsequent melting fills the lake and mobilizes Fe. Alternatively, the data can be explained by water-table fluctuations. In either case, the metal enrichment likely contributed to the hardness of these rocks, aiding wave-ripple preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信