细孔针上聚集纳米流体流动的传热分析优化:灵敏度分析方法

Q1 Chemical Engineering
K.M. Nihaal , U.S. Mahabaleshwar , N. Swaminathan , G.V. Bognar
{"title":"细孔针上聚集纳米流体流动的传热分析优化:灵敏度分析方法","authors":"K.M. Nihaal ,&nbsp;U.S. Mahabaleshwar ,&nbsp;N. Swaminathan ,&nbsp;G.V. Bognar","doi":"10.1016/j.ijft.2025.101191","DOIUrl":null,"url":null,"abstract":"<div><div>The main aim of this work is to investigate the impact of Thermophoresis and Brownian motion on the Darcy-Forchheimer nanofluid model with convective boundary across a thin moving needle. With a suitable similarity approach, the Partial differential equations are reduced to non-dimensional ordinary differential equations. Further, these ordinary differential equations are solved numerically via the Runge Kutta Fehlberg (RKF-45) method. The influence of the various dimensionless constraints on momentum, thermal, and concentration profiles is examined with/ without aggregation visually through graphs. The observation reveals that the velocity profiles decrease for increasing values of Forchhiemer number. It is found that elevating values of Brownian motion elevate both thermal and concentration profiles and augmented values of thermophoresis boost thermal profile whereas a declining trend is seen in concentration profile with a rise in thermophoresis parameter. The outcomes reveal that the Nusselt number increased more with nanoparticle aggregation compared to without nanoparticle aggregation for rising Forchhiemer number whereas same trend is witnessed in Sherwood number for increasing value of Lewis number. The results from the sensitivity analysis show that heat source/sink has a significant impact on Nusselt number. Employing nanofluids with optimal nanoparticle aggregation, the findings can be used to enhance the efficacy of heat management systems in various industrial sectors like automotive and electronics.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101191"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of heat transfer analysis on an aggregated nanofluid flow over a thin porous needle: Sensitivity analysis approach\",\"authors\":\"K.M. Nihaal ,&nbsp;U.S. Mahabaleshwar ,&nbsp;N. Swaminathan ,&nbsp;G.V. Bognar\",\"doi\":\"10.1016/j.ijft.2025.101191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main aim of this work is to investigate the impact of Thermophoresis and Brownian motion on the Darcy-Forchheimer nanofluid model with convective boundary across a thin moving needle. With a suitable similarity approach, the Partial differential equations are reduced to non-dimensional ordinary differential equations. Further, these ordinary differential equations are solved numerically via the Runge Kutta Fehlberg (RKF-45) method. The influence of the various dimensionless constraints on momentum, thermal, and concentration profiles is examined with/ without aggregation visually through graphs. The observation reveals that the velocity profiles decrease for increasing values of Forchhiemer number. It is found that elevating values of Brownian motion elevate both thermal and concentration profiles and augmented values of thermophoresis boost thermal profile whereas a declining trend is seen in concentration profile with a rise in thermophoresis parameter. The outcomes reveal that the Nusselt number increased more with nanoparticle aggregation compared to without nanoparticle aggregation for rising Forchhiemer number whereas same trend is witnessed in Sherwood number for increasing value of Lewis number. The results from the sensitivity analysis show that heat source/sink has a significant impact on Nusselt number. Employing nanofluids with optimal nanoparticle aggregation, the findings can be used to enhance the efficacy of heat management systems in various industrial sectors like automotive and electronics.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"27 \",\"pages\":\"Article 101191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725001387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究热泳动和布朗运动对达西-福希海默纳米流体模型的影响,该模型具有穿过细移动针的对流边界。采用适当的相似度方法,将偏微分方程简化为无量纲常微分方程。利用Runge - Kutta - Fehlberg (RKF-45)方法对这些常微分方程进行了数值求解。各种无量纲约束对动量、热量和浓度分布的影响通过图形直观地检查了有无聚集。观测结果表明,随着福希海默数的增大,速度剖面减小。发现布朗运动值的升高使热谱和浓度谱升高,热泳参数的增大使热谱升高,而浓度谱随热泳参数的升高呈下降趋势。结果表明,与未加纳米粒子相比,加纳米粒子的Nusselt数随着Forchhiemer数的增加而增加,而Sherwood数随着Lewis数的增加而增加。灵敏度分析结果表明,热源/汇对努塞尔数有显著影响。利用具有最佳纳米颗粒聚集的纳米流体,研究结果可用于提高汽车和电子等各种工业部门的热管理系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of heat transfer analysis on an aggregated nanofluid flow over a thin porous needle: Sensitivity analysis approach
The main aim of this work is to investigate the impact of Thermophoresis and Brownian motion on the Darcy-Forchheimer nanofluid model with convective boundary across a thin moving needle. With a suitable similarity approach, the Partial differential equations are reduced to non-dimensional ordinary differential equations. Further, these ordinary differential equations are solved numerically via the Runge Kutta Fehlberg (RKF-45) method. The influence of the various dimensionless constraints on momentum, thermal, and concentration profiles is examined with/ without aggregation visually through graphs. The observation reveals that the velocity profiles decrease for increasing values of Forchhiemer number. It is found that elevating values of Brownian motion elevate both thermal and concentration profiles and augmented values of thermophoresis boost thermal profile whereas a declining trend is seen in concentration profile with a rise in thermophoresis parameter. The outcomes reveal that the Nusselt number increased more with nanoparticle aggregation compared to without nanoparticle aggregation for rising Forchhiemer number whereas same trend is witnessed in Sherwood number for increasing value of Lewis number. The results from the sensitivity analysis show that heat source/sink has a significant impact on Nusselt number. Employing nanofluids with optimal nanoparticle aggregation, the findings can be used to enhance the efficacy of heat management systems in various industrial sectors like automotive and electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信