Q1 Chemical Engineering
Anum Shafiq , Tabassum Naz Sindhu , Muhammad Ahmad Iqbal , Tahani A. Abushal
{"title":"Significance of Rosseland’s radiative process in magnetohydrodynamic Darcy–Forchheimer non-Newtonian fluid flow in a parabolic trough solar collector: Probable error","authors":"Anum Shafiq ,&nbsp;Tabassum Naz Sindhu ,&nbsp;Muhammad Ahmad Iqbal ,&nbsp;Tahani A. Abushal","doi":"10.1016/j.ijft.2025.101193","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal energy is produced from sunlight through solar thermal collectors, with the parabolic trough solar collector (PTSC) playing a crucial role in concentrated solar power (CSP) technologies by capturing solar energy at temperatures between 325 and 700 K. The tangent hyperbolic fluid model, a non-Newtonian fluid model, effectively predicts shear thinning behavior, as shown in experimental studies. This model’s rheological properties at varying shear rates contribute to its superior heat transmission performance. This study investigates the thermal efficiency of Darcy–Forchheimer magnetohydrodynamic tangent hyperbolic fluid flow in inclined cylindrical films, incorporating a non-uniform heat source/sink in the PTSC framework. The analysis considers the effects of radiation alongside the non-uniform heat source or sink on thermal phenomena. By applying relevant transformations, the governing equations are reformulated into a nonlinear ordinary differential system, solved using the Runge–Kutta fourth-order method with the shooting technique. Results are analyzed mathematically and graphically. The correlation coefficient is used as a statistical metric to examine the relationship between key parameters and their effect on the skin friction coefficient (SKF) and local Nusselt number (LNN). This approach evaluates potential errors to determine statistical significance. Findings show that Reynolds number exhibits a strong correlation of 0.8828 with SKF and 0.9769 with LNN, suggesting significant effects on heat transfer. Notably, parameters such as local porosity number and magnetic number affect SKF, while local porosity and mixed convection parameters strongly correlate with LNN, indicating that utilizing such fluids in PTSCs can enhance heat transmission rates and optimize solar energy utilization, ultimately improving system efficiency.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101193"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

热能是通过太阳能集热器从太阳光中产生的,抛物面槽式太阳能集热器(PTSC)通过捕捉温度在 325 至 700 K 之间的太阳能,在聚光太阳能发电(CSP)技术中发挥着重要作用。该模型在不同剪切速率下的流变特性使其具有卓越的热传递性能。本研究调查了倾斜圆柱形薄膜中达西-福克海默磁流体切线双曲面流体流动的热效率,并在 PTSC 框架中加入了非均匀热源/散热器。分析考虑了非均匀热源或散热器的辐射对热现象的影响。通过应用相关变换,将控制方程重新表述为非线性常微分系统,并使用 Runge-Kutta 四阶方法和射击技术进行求解。对结果进行了数学和图形分析。相关系数被用作一种统计指标,用于检查关键参数之间的关系及其对表皮摩擦系数(SKF)和局部努塞尔特数(LNN)的影响。这种方法可评估潜在误差,以确定统计意义。研究结果表明,雷诺数与 SKF 和 LNN 的相关性分别为 0.8828 和 0.9769,这表明雷诺数对传热有显著影响。值得注意的是,局部孔隙度数和磁数等参数会影响 SKF,而局部孔隙度和混合对流参数则与 LNN 密切相关,这表明在 PTSC 中使用此类流体可以提高热传输率,优化太阳能利用,最终提高系统效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance of Rosseland’s radiative process in magnetohydrodynamic Darcy–Forchheimer non-Newtonian fluid flow in a parabolic trough solar collector: Probable error
Thermal energy is produced from sunlight through solar thermal collectors, with the parabolic trough solar collector (PTSC) playing a crucial role in concentrated solar power (CSP) technologies by capturing solar energy at temperatures between 325 and 700 K. The tangent hyperbolic fluid model, a non-Newtonian fluid model, effectively predicts shear thinning behavior, as shown in experimental studies. This model’s rheological properties at varying shear rates contribute to its superior heat transmission performance. This study investigates the thermal efficiency of Darcy–Forchheimer magnetohydrodynamic tangent hyperbolic fluid flow in inclined cylindrical films, incorporating a non-uniform heat source/sink in the PTSC framework. The analysis considers the effects of radiation alongside the non-uniform heat source or sink on thermal phenomena. By applying relevant transformations, the governing equations are reformulated into a nonlinear ordinary differential system, solved using the Runge–Kutta fourth-order method with the shooting technique. Results are analyzed mathematically and graphically. The correlation coefficient is used as a statistical metric to examine the relationship between key parameters and their effect on the skin friction coefficient (SKF) and local Nusselt number (LNN). This approach evaluates potential errors to determine statistical significance. Findings show that Reynolds number exhibits a strong correlation of 0.8828 with SKF and 0.9769 with LNN, suggesting significant effects on heat transfer. Notably, parameters such as local porosity number and magnetic number affect SKF, while local porosity and mixed convection parameters strongly correlate with LNN, indicating that utilizing such fluids in PTSCs can enhance heat transmission rates and optimize solar energy utilization, ultimately improving system efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信