ZnFe2O4/g-C3N4/rGO纳米复合材料的微纳气泡辅助光催化及抗菌活性

Q1 Environmental Science
Sutthida Wongwichian , Ranjith Rajendran , Orawan Rojviroon , Priyadharsan Arumugam , Sanya Sirivithayapakorn , Thammasak Rojviroon
{"title":"ZnFe2O4/g-C3N4/rGO纳米复合材料的微纳气泡辅助光催化及抗菌活性","authors":"Sutthida Wongwichian ,&nbsp;Ranjith Rajendran ,&nbsp;Orawan Rojviroon ,&nbsp;Priyadharsan Arumugam ,&nbsp;Sanya Sirivithayapakorn ,&nbsp;Thammasak Rojviroon","doi":"10.1016/j.enmm.2025.101065","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing the ongoing challenge of water pollution by synthetic dyes requires advanced approaches. This study examines the improved degradation of Indigo Carmine (IC) dye using a ternary nanocomposite made of ZnFe<sub>2</sub>O<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and reduced graphene oxide (rGO), in combination with micro-nanobubble technology. The nanocomposite was synthesized using hydrothermal method, promoting effective interaction between ZnFe<sub>2</sub>O<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and rGO, which enhances photocatalytic performance. The ZnFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/rGO nanocomposite (ZGR NCs) exhibited a 92 % degradation efficiency of IC dye within 60 min, significantly outperforming ZnFe<sub>2</sub>O<sub>4</sub> (49 %), ZG (59 %), ZR (64 %), and ZGR without MNB (72 %). The photocatalytic process followed pseudo-first-order kinetics with a high correlation coefficient (R<sup>2</sup> ∼ 0.9789–0.9968), demonstrating the efficiency of charge separation and transfer facilitated by rGO. ZnFe<sub>2</sub>O<sub>4</sub> excels in absorbing visible light, g-C<sub>3</sub>N<sub>4</sub> serves as a capable photocatalyst with a suitable bandgap for visible light, and rGO further facilitates electron mobility, minimizing charge recombination. Also, the combination of ZnFe<sub>2</sub>O<sub>4</sub>, rGO, and g-C<sub>3</sub>N<sub>4</sub> generates a synergistic effect that significantly boosts photocatalytic activity. This interaction leads to more effective production of reactive oxygen species, which are essential for degrading pollutants. The nanocomposite also exhibited excellent reusability, retaining 88 % of its initial efficiency after five cycles. Additionally, antibacterial studies revealed strong inhibition zones against <em>Streptococcus mutans</em> (18–22 mm) and <em>Enterococcus faecalis</em> (14–20 mm), attributed to ROS-induced bacterial membrane disruption. These findings highlight the multifunctionality of the ZGR nanocomposite-micro-nanobubble (MNBs) system, offering a promising approach for sustainable wastewater treatment and antibacterial applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101065"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-nanobubble assisted photocatalytic and antibacterial activity of ZnFe2O4/g-C3N4/rGO nanocomposite\",\"authors\":\"Sutthida Wongwichian ,&nbsp;Ranjith Rajendran ,&nbsp;Orawan Rojviroon ,&nbsp;Priyadharsan Arumugam ,&nbsp;Sanya Sirivithayapakorn ,&nbsp;Thammasak Rojviroon\",\"doi\":\"10.1016/j.enmm.2025.101065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing the ongoing challenge of water pollution by synthetic dyes requires advanced approaches. This study examines the improved degradation of Indigo Carmine (IC) dye using a ternary nanocomposite made of ZnFe<sub>2</sub>O<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and reduced graphene oxide (rGO), in combination with micro-nanobubble technology. The nanocomposite was synthesized using hydrothermal method, promoting effective interaction between ZnFe<sub>2</sub>O<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>, and rGO, which enhances photocatalytic performance. The ZnFe<sub>2</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>/rGO nanocomposite (ZGR NCs) exhibited a 92 % degradation efficiency of IC dye within 60 min, significantly outperforming ZnFe<sub>2</sub>O<sub>4</sub> (49 %), ZG (59 %), ZR (64 %), and ZGR without MNB (72 %). The photocatalytic process followed pseudo-first-order kinetics with a high correlation coefficient (R<sup>2</sup> ∼ 0.9789–0.9968), demonstrating the efficiency of charge separation and transfer facilitated by rGO. ZnFe<sub>2</sub>O<sub>4</sub> excels in absorbing visible light, g-C<sub>3</sub>N<sub>4</sub> serves as a capable photocatalyst with a suitable bandgap for visible light, and rGO further facilitates electron mobility, minimizing charge recombination. Also, the combination of ZnFe<sub>2</sub>O<sub>4</sub>, rGO, and g-C<sub>3</sub>N<sub>4</sub> generates a synergistic effect that significantly boosts photocatalytic activity. This interaction leads to more effective production of reactive oxygen species, which are essential for degrading pollutants. The nanocomposite also exhibited excellent reusability, retaining 88 % of its initial efficiency after five cycles. Additionally, antibacterial studies revealed strong inhibition zones against <em>Streptococcus mutans</em> (18–22 mm) and <em>Enterococcus faecalis</em> (14–20 mm), attributed to ROS-induced bacterial membrane disruption. These findings highlight the multifunctionality of the ZGR nanocomposite-micro-nanobubble (MNBs) system, offering a promising approach for sustainable wastewater treatment and antibacterial applications.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

解决合成染料对水污染的持续挑战需要先进的方法。本研究利用由 ZnFe2O4、g-C3N4 和还原氧化石墨烯(rGO)组成的三元纳米复合材料,结合微纳米气泡技术,研究了如何改善靛蓝(IC)染料的降解。该纳米复合材料采用水热法合成,促进了 ZnFe2O4、g-C3N4 和 rGO 之间的有效相互作用,从而提高了光催化性能。ZnFe2O4/g-C3N4/rGO 纳米复合材料(ZGR NCs)在 60 分钟内对 IC 染料的降解效率达到 92%,明显优于 ZnFe2O4(49%)、ZG(59%)、ZR(64%)和不含 MNB 的 ZGR(72%)。光催化过程遵循伪一阶动力学,相关系数很高(R2 ∼ 0.9789-0.9968),表明 rGO 促进了电荷分离和转移的效率。ZnFe2O4 擅长吸收可见光,g-C3N4 可作为光催化剂,具有适合可见光的带隙,而 rGO 则进一步促进了电子迁移,最大限度地减少了电荷重组。此外,ZnFe2O4、rGO 和 g-C3N4 的组合还能产生协同效应,显著提高光催化活性。这种相互作用能更有效地产生活性氧,而活性氧对降解污染物至关重要。这种纳米复合材料还表现出极佳的可重复使用性,在循环使用五个周期后,其初始效率仍能保持 88%。此外,抗菌研究显示,纳米复合材料对变异链球菌(18-22 毫米)和粪肠球菌(14-20 毫米)有很强的抑制作用,这归因于活性氧诱导的细菌膜破坏。这些发现凸显了 ZGR 纳米复合材料-微纳米气泡(MNBs)系统的多功能性,为可持续废水处理和抗菌应用提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micro-nanobubble assisted photocatalytic and antibacterial activity of ZnFe2O4/g-C3N4/rGO nanocomposite

Micro-nanobubble assisted photocatalytic and antibacterial activity of ZnFe2O4/g-C3N4/rGO nanocomposite
Addressing the ongoing challenge of water pollution by synthetic dyes requires advanced approaches. This study examines the improved degradation of Indigo Carmine (IC) dye using a ternary nanocomposite made of ZnFe2O4, g-C3N4, and reduced graphene oxide (rGO), in combination with micro-nanobubble technology. The nanocomposite was synthesized using hydrothermal method, promoting effective interaction between ZnFe2O4, g-C3N4, and rGO, which enhances photocatalytic performance. The ZnFe2O4/g-C3N4/rGO nanocomposite (ZGR NCs) exhibited a 92 % degradation efficiency of IC dye within 60 min, significantly outperforming ZnFe2O4 (49 %), ZG (59 %), ZR (64 %), and ZGR without MNB (72 %). The photocatalytic process followed pseudo-first-order kinetics with a high correlation coefficient (R2 ∼ 0.9789–0.9968), demonstrating the efficiency of charge separation and transfer facilitated by rGO. ZnFe2O4 excels in absorbing visible light, g-C3N4 serves as a capable photocatalyst with a suitable bandgap for visible light, and rGO further facilitates electron mobility, minimizing charge recombination. Also, the combination of ZnFe2O4, rGO, and g-C3N4 generates a synergistic effect that significantly boosts photocatalytic activity. This interaction leads to more effective production of reactive oxygen species, which are essential for degrading pollutants. The nanocomposite also exhibited excellent reusability, retaining 88 % of its initial efficiency after five cycles. Additionally, antibacterial studies revealed strong inhibition zones against Streptococcus mutans (18–22 mm) and Enterococcus faecalis (14–20 mm), attributed to ROS-induced bacterial membrane disruption. These findings highlight the multifunctionality of the ZGR nanocomposite-micro-nanobubble (MNBs) system, offering a promising approach for sustainable wastewater treatment and antibacterial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信