{"title":"利用植物提取物绿色合成金属氧化物纳米颗粒:对抗抗菌素耐药性的可持续方法","authors":"Sathyabama Balaji , Muthu Senthil Pandian , Ramasamy Ganesamoorthy , Thirugnanasambandham Karchiyappan","doi":"10.1016/j.enmm.2025.101066","DOIUrl":null,"url":null,"abstract":"<div><div>The green synthesis of metal oxide nanoparticles using plant extracts has emerged as a sustainable and eco-friendly approach to combat antimicrobial resistance. Bio-inspired synthesis is an innovative approach miming natural processes to create advanced materials with unique properties. This method leverages biological principles and templates to guide the synthesis of nanoparticles, polymers, and other materials. The resulting materials often exhibit enhanced performance, biocompatibility, and sustainability. This method leverages the natural reducing, capping, and stabilizing agents found in plant extracts to synthesize nanoparticles, avoiding the use of hazardous chemicals. This study explores the bio-inspired synthesis of metallic and non-metallic nanoparticles, focusing on their potential application bio-inspireds in various fields, including medicine, energy storage, and environmental remediation. By understanding and replicating nature’s strategies, bio-inspired synthesis offers a promising pathway to develop next-generation materials with improved functionality and reduced environmental impact. The development of nanoparticles (NPs) having antibacterial action, like metal oxide nanoparticles (MONPs), is made possible by nanotechnology. Because MONPs can interact with multiple biological components and suppress microbial growth, they offer a potential solution to overcome pathogenicity or antimicrobial resistance. The overview of the review provides burgeoning research surrounding the green synthesis of different nanoparticles utilizing various plant extracts. It provides the antimicrobial efficacy of nanoparticles, including zinc oxide (ZnO), titanium dioxide (TiO<sub>2</sub>), iron oxide (FeO), copper oxide (CuO), and nickel oxide (NiO), at different concentrations against different bacterial strains. Furthermore, the mechanism underlying the antimicrobial activity of these nanoparticles was discussed. The findings underscore the importance of sustainable nanotechnology in developing effective antimicrobial agents and promoting environmental sustainability.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101066"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance\",\"authors\":\"Sathyabama Balaji , Muthu Senthil Pandian , Ramasamy Ganesamoorthy , Thirugnanasambandham Karchiyappan\",\"doi\":\"10.1016/j.enmm.2025.101066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The green synthesis of metal oxide nanoparticles using plant extracts has emerged as a sustainable and eco-friendly approach to combat antimicrobial resistance. Bio-inspired synthesis is an innovative approach miming natural processes to create advanced materials with unique properties. This method leverages biological principles and templates to guide the synthesis of nanoparticles, polymers, and other materials. The resulting materials often exhibit enhanced performance, biocompatibility, and sustainability. This method leverages the natural reducing, capping, and stabilizing agents found in plant extracts to synthesize nanoparticles, avoiding the use of hazardous chemicals. This study explores the bio-inspired synthesis of metallic and non-metallic nanoparticles, focusing on their potential application bio-inspireds in various fields, including medicine, energy storage, and environmental remediation. By understanding and replicating nature’s strategies, bio-inspired synthesis offers a promising pathway to develop next-generation materials with improved functionality and reduced environmental impact. The development of nanoparticles (NPs) having antibacterial action, like metal oxide nanoparticles (MONPs), is made possible by nanotechnology. Because MONPs can interact with multiple biological components and suppress microbial growth, they offer a potential solution to overcome pathogenicity or antimicrobial resistance. The overview of the review provides burgeoning research surrounding the green synthesis of different nanoparticles utilizing various plant extracts. It provides the antimicrobial efficacy of nanoparticles, including zinc oxide (ZnO), titanium dioxide (TiO<sub>2</sub>), iron oxide (FeO), copper oxide (CuO), and nickel oxide (NiO), at different concentrations against different bacterial strains. Furthermore, the mechanism underlying the antimicrobial activity of these nanoparticles was discussed. The findings underscore the importance of sustainable nanotechnology in developing effective antimicrobial agents and promoting environmental sustainability.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153225000273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Green synthesis of metal oxide nanoparticles using plant extracts: A sustainable approach to combat antimicrobial resistance
The green synthesis of metal oxide nanoparticles using plant extracts has emerged as a sustainable and eco-friendly approach to combat antimicrobial resistance. Bio-inspired synthesis is an innovative approach miming natural processes to create advanced materials with unique properties. This method leverages biological principles and templates to guide the synthesis of nanoparticles, polymers, and other materials. The resulting materials often exhibit enhanced performance, biocompatibility, and sustainability. This method leverages the natural reducing, capping, and stabilizing agents found in plant extracts to synthesize nanoparticles, avoiding the use of hazardous chemicals. This study explores the bio-inspired synthesis of metallic and non-metallic nanoparticles, focusing on their potential application bio-inspireds in various fields, including medicine, energy storage, and environmental remediation. By understanding and replicating nature’s strategies, bio-inspired synthesis offers a promising pathway to develop next-generation materials with improved functionality and reduced environmental impact. The development of nanoparticles (NPs) having antibacterial action, like metal oxide nanoparticles (MONPs), is made possible by nanotechnology. Because MONPs can interact with multiple biological components and suppress microbial growth, they offer a potential solution to overcome pathogenicity or antimicrobial resistance. The overview of the review provides burgeoning research surrounding the green synthesis of different nanoparticles utilizing various plant extracts. It provides the antimicrobial efficacy of nanoparticles, including zinc oxide (ZnO), titanium dioxide (TiO2), iron oxide (FeO), copper oxide (CuO), and nickel oxide (NiO), at different concentrations against different bacterial strains. Furthermore, the mechanism underlying the antimicrobial activity of these nanoparticles was discussed. The findings underscore the importance of sustainable nanotechnology in developing effective antimicrobial agents and promoting environmental sustainability.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation