{"title":"不同倾斜角度下索撑光伏板阵列的空气动力学实验研究","authors":"Jiawei Wan , Yunzhu Cai , Hai Fang","doi":"10.1016/j.jweia.2025.106093","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an experimental investigation of unsteady aerodynamic lift and overturning moment on cable-supported photovoltaic (PV) panel arrays. Unlike prior studies focusing on area-averaged and peak pressure coefficients, this work examines second-order statistics of aerodynamic forces by analyzing fluctuating pressures on scaled models of PV panel rows. Wind tunnel tests were conducted on panels at different tilt angles, with synchronized pressure measurements used to compute aerodynamic coefficients, spectra, correlations, and coherences for lift and overturning moment. Results demonstrate that spanwise correlations and coherences of these aerodynamics exceed those of incident turbulence for most cases. The two-wavenumber aerodynamic admittance model, defined as the product of a 2D aerodynamic admittance function (AAF) and a spanwise correction factor, was employed to characterize unsteady wind loads. For zero tilt angle, the 2D AAFs for lift and moment deviated from the Sears function, displaying a transitional region where values surpassed the Sears function. For tilted PV panels, distinct peaks in the AAFs at elevated wavenumbers were observed, linked to shear layer instabilities in the leading-edge separation zone. An empirical model for the 2D AAF was proposed, which incorporates a correction term to capture these peaks, highlighting their significance in buffeting response calculations.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"262 ","pages":"Article 106093"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental study of aerodynamics on cable-supported photovoltaic panel arrays at different tilt angles\",\"authors\":\"Jiawei Wan , Yunzhu Cai , Hai Fang\",\"doi\":\"10.1016/j.jweia.2025.106093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an experimental investigation of unsteady aerodynamic lift and overturning moment on cable-supported photovoltaic (PV) panel arrays. Unlike prior studies focusing on area-averaged and peak pressure coefficients, this work examines second-order statistics of aerodynamic forces by analyzing fluctuating pressures on scaled models of PV panel rows. Wind tunnel tests were conducted on panels at different tilt angles, with synchronized pressure measurements used to compute aerodynamic coefficients, spectra, correlations, and coherences for lift and overturning moment. Results demonstrate that spanwise correlations and coherences of these aerodynamics exceed those of incident turbulence for most cases. The two-wavenumber aerodynamic admittance model, defined as the product of a 2D aerodynamic admittance function (AAF) and a spanwise correction factor, was employed to characterize unsteady wind loads. For zero tilt angle, the 2D AAFs for lift and moment deviated from the Sears function, displaying a transitional region where values surpassed the Sears function. For tilted PV panels, distinct peaks in the AAFs at elevated wavenumbers were observed, linked to shear layer instabilities in the leading-edge separation zone. An empirical model for the 2D AAF was proposed, which incorporates a correction term to capture these peaks, highlighting their significance in buffeting response calculations.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"262 \",\"pages\":\"Article 106093\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610525000893\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000893","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An experimental study of aerodynamics on cable-supported photovoltaic panel arrays at different tilt angles
This paper presents an experimental investigation of unsteady aerodynamic lift and overturning moment on cable-supported photovoltaic (PV) panel arrays. Unlike prior studies focusing on area-averaged and peak pressure coefficients, this work examines second-order statistics of aerodynamic forces by analyzing fluctuating pressures on scaled models of PV panel rows. Wind tunnel tests were conducted on panels at different tilt angles, with synchronized pressure measurements used to compute aerodynamic coefficients, spectra, correlations, and coherences for lift and overturning moment. Results demonstrate that spanwise correlations and coherences of these aerodynamics exceed those of incident turbulence for most cases. The two-wavenumber aerodynamic admittance model, defined as the product of a 2D aerodynamic admittance function (AAF) and a spanwise correction factor, was employed to characterize unsteady wind loads. For zero tilt angle, the 2D AAFs for lift and moment deviated from the Sears function, displaying a transitional region where values surpassed the Sears function. For tilted PV panels, distinct peaks in the AAFs at elevated wavenumbers were observed, linked to shear layer instabilities in the leading-edge separation zone. An empirical model for the 2D AAF was proposed, which incorporates a correction term to capture these peaks, highlighting their significance in buffeting response calculations.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.