Aolin Yang, Lele Liu, Chaoyu Chen, Zhijia Dong, Pibo Ma
{"title":"蛛网启发的柔性网格复合材料具有优异的抗冲击性,传感性能和阻燃性","authors":"Aolin Yang, Lele Liu, Chaoyu Chen, Zhijia Dong, Pibo Ma","doi":"10.1016/j.compstruct.2025.119187","DOIUrl":null,"url":null,"abstract":"<div><div>Mesh materials, due to their unique structure and excellent performance, are widely used, especially spiderweb structural materials, which have garnered significant attention. Besides requiring lightweight, flexibility, and excellent mechanical performance, intelligence and multifunctionality are also crucial development directions for mesh. In this study, we propose a novel spiderweb-inspired mesh composite (MSTFs/mesh) with excellent impact resistance, sensing performance and flame retardancy. The composite features a knotless mesh with a spiderweb-like topology, fabricated through braiding and knitting techniques, serving as the structural body, complemented by functional layers of shear thickening fluid containing multi-walled carbon nanotubes. Yarn pull-out and bursting tests revealed that the maximum resistance forces of the MSTFs/mesh are 144 N and 3516 N respectively, which are 11.2 times and 1.58 times higher than those of the neat mesh. The topology of the spider web and the shear thickening fluid provide the mesh composite with outstanding impact resistance, capable of withstanding an impact energy of 50 J. The incorporation of MWCNTs imparts sensing capabilities to the composite. Furthermore, the mesh composite retains its structural integrity after 40 s of burning on an alcohol lamp flame, demonstrating excellent flame retardancy and thermal stability. This advanced multifunctional mesh composite offers valuable insights into the design of next-generation mesh materials, promising extensive applications in protection engineering and beyond.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"365 ","pages":"Article 119187"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiderweb-inspired flexible mesh composites with excellent impact resistance, sensing performance and flame retardancy\",\"authors\":\"Aolin Yang, Lele Liu, Chaoyu Chen, Zhijia Dong, Pibo Ma\",\"doi\":\"10.1016/j.compstruct.2025.119187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mesh materials, due to their unique structure and excellent performance, are widely used, especially spiderweb structural materials, which have garnered significant attention. Besides requiring lightweight, flexibility, and excellent mechanical performance, intelligence and multifunctionality are also crucial development directions for mesh. In this study, we propose a novel spiderweb-inspired mesh composite (MSTFs/mesh) with excellent impact resistance, sensing performance and flame retardancy. The composite features a knotless mesh with a spiderweb-like topology, fabricated through braiding and knitting techniques, serving as the structural body, complemented by functional layers of shear thickening fluid containing multi-walled carbon nanotubes. Yarn pull-out and bursting tests revealed that the maximum resistance forces of the MSTFs/mesh are 144 N and 3516 N respectively, which are 11.2 times and 1.58 times higher than those of the neat mesh. The topology of the spider web and the shear thickening fluid provide the mesh composite with outstanding impact resistance, capable of withstanding an impact energy of 50 J. The incorporation of MWCNTs imparts sensing capabilities to the composite. Furthermore, the mesh composite retains its structural integrity after 40 s of burning on an alcohol lamp flame, demonstrating excellent flame retardancy and thermal stability. This advanced multifunctional mesh composite offers valuable insights into the design of next-generation mesh materials, promising extensive applications in protection engineering and beyond.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"365 \",\"pages\":\"Article 119187\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822325003526\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325003526","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Spiderweb-inspired flexible mesh composites with excellent impact resistance, sensing performance and flame retardancy
Mesh materials, due to their unique structure and excellent performance, are widely used, especially spiderweb structural materials, which have garnered significant attention. Besides requiring lightweight, flexibility, and excellent mechanical performance, intelligence and multifunctionality are also crucial development directions for mesh. In this study, we propose a novel spiderweb-inspired mesh composite (MSTFs/mesh) with excellent impact resistance, sensing performance and flame retardancy. The composite features a knotless mesh with a spiderweb-like topology, fabricated through braiding and knitting techniques, serving as the structural body, complemented by functional layers of shear thickening fluid containing multi-walled carbon nanotubes. Yarn pull-out and bursting tests revealed that the maximum resistance forces of the MSTFs/mesh are 144 N and 3516 N respectively, which are 11.2 times and 1.58 times higher than those of the neat mesh. The topology of the spider web and the shear thickening fluid provide the mesh composite with outstanding impact resistance, capable of withstanding an impact energy of 50 J. The incorporation of MWCNTs imparts sensing capabilities to the composite. Furthermore, the mesh composite retains its structural integrity after 40 s of burning on an alcohol lamp flame, demonstrating excellent flame retardancy and thermal stability. This advanced multifunctional mesh composite offers valuable insights into the design of next-generation mesh materials, promising extensive applications in protection engineering and beyond.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.