{"title":"新型抗PD-L1 DNA适配体Apta35通过肺癌激活的T淋巴细胞增强非小细胞肺癌细胞的细胞毒性和凋亡能力","authors":"Priyatharcini Kejamurthy, Jaganathan MK, Ramya Devi KT","doi":"10.1016/j.intimp.2025.114621","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence of Programmed death ligand 1 (PD-L1) expression in the population of NSCLC patients and blocking the PD1/PD-L1 pathway by inhibiting the PD-1 receptor on immune cells or the PD-L1 ligand on tumour and/or immune cells can inhibit tumour growth. EFBALite algorithm that enables efficient and cost-effective selection of aptamers, expediting the process. Here, we present the development, computational validation, and <em>in vitro</em> analysis of NSCLC of DNA aptamers targeting PD-L1. The Gibbs free energy of two anti-PD-L1 aptamers, <em>Apta35</em> and <em>Apta90</em> with −3.06 and − 2.4 kcal/mol respectively. The docking score for Apta35 was −272.3 and 1171.765 for HDOCK and ZDOCK respectively. Further, the Apta35 was taken for the <em>in vitro</em> studies as it was more stable and incubated with NCI-H460. Initially, we confirmed the binding of the TAMRA-labelled Apta35 to the NCI-H460 cell surface through microscopic imaging and further confirmed through FACS analysis. Further experimental results showed that the Apta35 treated along with the act-T cells group reduced the percentage of viability (28 ± 3.5), increased toxicity, and reduced count of NCI-H460 cells when compared with the cells treated only with the act-T cells concerning the treatment to 50 nM concentration. In summary, targeting PD-L1 with a specific aptamer provides an innovative strategy for targeting NSCLC. Apta35 aptamer showed no significant toxicity in the BALB/c nude mice while it was injected every 2 days for a total of 12 days of treatment.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"155 ","pages":"Article 114621"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel anti-PD-L1 DNA aptamer, Apta35 enhances non-small cell lung cancer cell cytotoxicity and apoptosis through lung cancer-activated T lymphocytes\",\"authors\":\"Priyatharcini Kejamurthy, Jaganathan MK, Ramya Devi KT\",\"doi\":\"10.1016/j.intimp.2025.114621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prevalence of Programmed death ligand 1 (PD-L1) expression in the population of NSCLC patients and blocking the PD1/PD-L1 pathway by inhibiting the PD-1 receptor on immune cells or the PD-L1 ligand on tumour and/or immune cells can inhibit tumour growth. EFBALite algorithm that enables efficient and cost-effective selection of aptamers, expediting the process. Here, we present the development, computational validation, and <em>in vitro</em> analysis of NSCLC of DNA aptamers targeting PD-L1. The Gibbs free energy of two anti-PD-L1 aptamers, <em>Apta35</em> and <em>Apta90</em> with −3.06 and − 2.4 kcal/mol respectively. The docking score for Apta35 was −272.3 and 1171.765 for HDOCK and ZDOCK respectively. Further, the Apta35 was taken for the <em>in vitro</em> studies as it was more stable and incubated with NCI-H460. Initially, we confirmed the binding of the TAMRA-labelled Apta35 to the NCI-H460 cell surface through microscopic imaging and further confirmed through FACS analysis. Further experimental results showed that the Apta35 treated along with the act-T cells group reduced the percentage of viability (28 ± 3.5), increased toxicity, and reduced count of NCI-H460 cells when compared with the cells treated only with the act-T cells concerning the treatment to 50 nM concentration. In summary, targeting PD-L1 with a specific aptamer provides an innovative strategy for targeting NSCLC. Apta35 aptamer showed no significant toxicity in the BALB/c nude mice while it was injected every 2 days for a total of 12 days of treatment.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"155 \",\"pages\":\"Article 114621\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576925006113\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925006113","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A novel anti-PD-L1 DNA aptamer, Apta35 enhances non-small cell lung cancer cell cytotoxicity and apoptosis through lung cancer-activated T lymphocytes
The prevalence of Programmed death ligand 1 (PD-L1) expression in the population of NSCLC patients and blocking the PD1/PD-L1 pathway by inhibiting the PD-1 receptor on immune cells or the PD-L1 ligand on tumour and/or immune cells can inhibit tumour growth. EFBALite algorithm that enables efficient and cost-effective selection of aptamers, expediting the process. Here, we present the development, computational validation, and in vitro analysis of NSCLC of DNA aptamers targeting PD-L1. The Gibbs free energy of two anti-PD-L1 aptamers, Apta35 and Apta90 with −3.06 and − 2.4 kcal/mol respectively. The docking score for Apta35 was −272.3 and 1171.765 for HDOCK and ZDOCK respectively. Further, the Apta35 was taken for the in vitro studies as it was more stable and incubated with NCI-H460. Initially, we confirmed the binding of the TAMRA-labelled Apta35 to the NCI-H460 cell surface through microscopic imaging and further confirmed through FACS analysis. Further experimental results showed that the Apta35 treated along with the act-T cells group reduced the percentage of viability (28 ± 3.5), increased toxicity, and reduced count of NCI-H460 cells when compared with the cells treated only with the act-T cells concerning the treatment to 50 nM concentration. In summary, targeting PD-L1 with a specific aptamer provides an innovative strategy for targeting NSCLC. Apta35 aptamer showed no significant toxicity in the BALB/c nude mice while it was injected every 2 days for a total of 12 days of treatment.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.