使用深度学习的长期臭氧预测中的注意分数和峰值感知

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhihao Xu , Danni Xu , Wenguang Li , Puyu Lian , Yuheng Chen , Fangyuan Yang , Kaihui Zhao
{"title":"使用深度学习的长期臭氧预测中的注意分数和峰值感知","authors":"Zhihao Xu ,&nbsp;Danni Xu ,&nbsp;Wenguang Li ,&nbsp;Puyu Lian ,&nbsp;Yuheng Chen ,&nbsp;Fangyuan Yang ,&nbsp;Kaihui Zhao","doi":"10.1016/j.envsoft.2025.106467","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of traditional ozone (O<sub>3</sub>) forecasting models, this study established a novel Transformer-based model integrating attention scores and the peak perception. Attention scores dynamically quantify nonlinear relationships between O<sub>3</sub> and influencing factors, while peak perception method penalizes peak O<sub>3</sub> errors, ensuring accurate predictions during O<sub>3</sub> exceedance events. Our results demonstrate that the proposed model significantly improves the prediction accuracy for both hourly and maximum daily 8-h average O<sub>3</sub> concentrations, with the R<sup>2</sup> value increasing from 0.56 to 0.83 and the mean squared error decreasing from 0.47 to 0.42. Wind direction, wind speed, and carbon monoxide emerged as dominant factors during pollution episodes. Additionally, the model exhibits a high potential for predictability over extended lead times, with a mean absolute error of 0.67 at 24 h, stabilizing at 0.75 at 72 h. This approach enhances simulation accuracy and provides policymakers extended response windows for O<sub>3</sub> control strategies.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"189 ","pages":"Article 106467"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention scores and peak perception in long-term ozone prediction using deep learning\",\"authors\":\"Zhihao Xu ,&nbsp;Danni Xu ,&nbsp;Wenguang Li ,&nbsp;Puyu Lian ,&nbsp;Yuheng Chen ,&nbsp;Fangyuan Yang ,&nbsp;Kaihui Zhao\",\"doi\":\"10.1016/j.envsoft.2025.106467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the limitations of traditional ozone (O<sub>3</sub>) forecasting models, this study established a novel Transformer-based model integrating attention scores and the peak perception. Attention scores dynamically quantify nonlinear relationships between O<sub>3</sub> and influencing factors, while peak perception method penalizes peak O<sub>3</sub> errors, ensuring accurate predictions during O<sub>3</sub> exceedance events. Our results demonstrate that the proposed model significantly improves the prediction accuracy for both hourly and maximum daily 8-h average O<sub>3</sub> concentrations, with the R<sup>2</sup> value increasing from 0.56 to 0.83 and the mean squared error decreasing from 0.47 to 0.42. Wind direction, wind speed, and carbon monoxide emerged as dominant factors during pollution episodes. Additionally, the model exhibits a high potential for predictability over extended lead times, with a mean absolute error of 0.67 at 24 h, stabilizing at 0.75 at 72 h. This approach enhances simulation accuracy and provides policymakers extended response windows for O<sub>3</sub> control strategies.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"189 \",\"pages\":\"Article 106467\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001513\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001513","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决传统臭氧(O3)预测模型的局限性,本研究建立了一种基于transformer的模型,将注意力得分和峰值感知整合在一起。注意评分动态量化了O3与影响因素之间的非线性关系,而峰值感知法对峰值O3误差进行了惩罚,确保了O3超标事件的准确预测。结果表明,该模型显著提高了每小时和最大日8 h平均O3浓度的预测精度,R2值从0.56增加到0.83,均方误差从0.47减少到0.42。风向、风速和一氧化碳是污染期间的主要影响因素。此外,该模型在延长的交货期内具有很高的可预测性,24小时的平均绝对误差为0.67,72小时时稳定在0.75。这种方法提高了仿真精度,并为决策者提供了延长的O3控制策略响应窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention scores and peak perception in long-term ozone prediction using deep learning
To address the limitations of traditional ozone (O3) forecasting models, this study established a novel Transformer-based model integrating attention scores and the peak perception. Attention scores dynamically quantify nonlinear relationships between O3 and influencing factors, while peak perception method penalizes peak O3 errors, ensuring accurate predictions during O3 exceedance events. Our results demonstrate that the proposed model significantly improves the prediction accuracy for both hourly and maximum daily 8-h average O3 concentrations, with the R2 value increasing from 0.56 to 0.83 and the mean squared error decreasing from 0.47 to 0.42. Wind direction, wind speed, and carbon monoxide emerged as dominant factors during pollution episodes. Additionally, the model exhibits a high potential for predictability over extended lead times, with a mean absolute error of 0.67 at 24 h, stabilizing at 0.75 at 72 h. This approach enhances simulation accuracy and provides policymakers extended response windows for O3 control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信