验证自2015年El Niño事件以来在南非产生的操作性Niño3.4海温预报

IF 4.7 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Willem A. Landman , Anthony G. Barnston
{"title":"验证自2015年El Niño事件以来在南非产生的操作性Niño3.4海温预报","authors":"Willem A. Landman ,&nbsp;Anthony G. Barnston","doi":"10.1016/j.envdev.2025.101214","DOIUrl":null,"url":null,"abstract":"<div><div>The production of operational seasonal forecasts in South Africa began in the early 1990s, as South African modellers published numerous papers describing the research and development supporting these forecast systems. While this effort focused largely on seasonal rainfall and temperature predictability over southern Africa, work has also gone into predictions of <em>global</em> sea-surface temperatures (SSTs), including predictions for the central Pacific Ocean, and particularly the ENSO-related Niño3.4 region. Here we present verification statistics of archived real-time Niño3.4 SST forecasts from multi-model forecasting systems developed respectively at the Council for Scientific and Industrial Research and at the University of Pretoria, both based in South Africa. These forecasting systems used forecasts produced by fully-coupled ocean-atmosphere models administered in the USA, and also by statistical models developed locally. Archived Niño3.4 SST forecast data are available continuously from 2015. The verification presented here covers a 9-year period beginning with forecasts for the 2015/16 El Niño event and ending with the 2023/24 El Niño event. In general, Niño3.4 forecast skill is limited during the boreal spring months and optimized during the boreal winter period when forecast variance is also largest. During boreal winter, probabilistic forecasts are able to discriminate between the El Niño, neutral and La Niña ENSO phases. Predictability of El Niño events is found to be highest of the three phases, with the lowest predictability for ENSO-neutral. Moreover, probability forecasts for El Niño and La Niña events are found to be mostly under-confident for high probability forecasts, and probabilities for neutral events are overestimated. A potential improvement in the probabilistic forecasts may be achieved by designing the climatological frequencies of the three forecast ENSO categories to match the observational definition based on ± 0.5 °C cutoffs.</div></div>","PeriodicalId":54269,"journal":{"name":"Environmental Development","volume":"55 ","pages":"Article 101214"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of operational Niño3.4 SST forecasts produced in South Africa since the 2015 El Niño event\",\"authors\":\"Willem A. Landman ,&nbsp;Anthony G. Barnston\",\"doi\":\"10.1016/j.envdev.2025.101214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The production of operational seasonal forecasts in South Africa began in the early 1990s, as South African modellers published numerous papers describing the research and development supporting these forecast systems. While this effort focused largely on seasonal rainfall and temperature predictability over southern Africa, work has also gone into predictions of <em>global</em> sea-surface temperatures (SSTs), including predictions for the central Pacific Ocean, and particularly the ENSO-related Niño3.4 region. Here we present verification statistics of archived real-time Niño3.4 SST forecasts from multi-model forecasting systems developed respectively at the Council for Scientific and Industrial Research and at the University of Pretoria, both based in South Africa. These forecasting systems used forecasts produced by fully-coupled ocean-atmosphere models administered in the USA, and also by statistical models developed locally. Archived Niño3.4 SST forecast data are available continuously from 2015. The verification presented here covers a 9-year period beginning with forecasts for the 2015/16 El Niño event and ending with the 2023/24 El Niño event. In general, Niño3.4 forecast skill is limited during the boreal spring months and optimized during the boreal winter period when forecast variance is also largest. During boreal winter, probabilistic forecasts are able to discriminate between the El Niño, neutral and La Niña ENSO phases. Predictability of El Niño events is found to be highest of the three phases, with the lowest predictability for ENSO-neutral. Moreover, probability forecasts for El Niño and La Niña events are found to be mostly under-confident for high probability forecasts, and probabilities for neutral events are overestimated. A potential improvement in the probabilistic forecasts may be achieved by designing the climatological frequencies of the three forecast ENSO categories to match the observational definition based on ± 0.5 °C cutoffs.</div></div>\",\"PeriodicalId\":54269,\"journal\":{\"name\":\"Environmental Development\",\"volume\":\"55 \",\"pages\":\"Article 101214\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Development\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211464525000806\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Development","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211464525000806","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

南非的季节预报工作始于20世纪90年代初,当时南非的建模者发表了许多论文,描述了支持这些预报系统的研究和发展。虽然这项工作主要集中在南部非洲的季节性降雨和温度可预测性,但也开展了全球海面温度(SSTs)的预测工作,包括对中太平洋的预测,特别是与enso有关的Niño3.4区域的预测。在这里,我们提供了来自南非科学和工业研究理事会和比勒陀利亚大学分别开发的多模式预测系统的存档实时Niño3.4海温预测的验证统计数据。这些预报系统使用由美国管理的完全耦合的海洋-大气模式和当地开发的统计模式所产生的预报。存档的Niño3.4海温预报数据从2015年开始连续提供。本文提供的验证涵盖了从2015/16年厄尔尼诺Niño事件预测开始到2023/24年厄尔尼诺Niño事件预测结束的9年期间。总体而言,Niño3.4预测技能在北方春季受到限制,在预测方差最大的北方冬季得到优化。在北方冬季,概率预报能够区分El Niño、中性和La Niña ENSO阶段。发现El Niño事件的可预测性是三个阶段中最高的,而enso中性事件的可预测性最低。此外,发现El Niño和La Niña事件的概率预测大多对高概率预测缺乏信心,而对中性事件的概率估计过高。通过设计三种预测ENSO类别的气候频率,使其与基于±0.5°C截止点的观测定义相匹配,可以实现概率预测的潜在改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of operational Niño3.4 SST forecasts produced in South Africa since the 2015 El Niño event
The production of operational seasonal forecasts in South Africa began in the early 1990s, as South African modellers published numerous papers describing the research and development supporting these forecast systems. While this effort focused largely on seasonal rainfall and temperature predictability over southern Africa, work has also gone into predictions of global sea-surface temperatures (SSTs), including predictions for the central Pacific Ocean, and particularly the ENSO-related Niño3.4 region. Here we present verification statistics of archived real-time Niño3.4 SST forecasts from multi-model forecasting systems developed respectively at the Council for Scientific and Industrial Research and at the University of Pretoria, both based in South Africa. These forecasting systems used forecasts produced by fully-coupled ocean-atmosphere models administered in the USA, and also by statistical models developed locally. Archived Niño3.4 SST forecast data are available continuously from 2015. The verification presented here covers a 9-year period beginning with forecasts for the 2015/16 El Niño event and ending with the 2023/24 El Niño event. In general, Niño3.4 forecast skill is limited during the boreal spring months and optimized during the boreal winter period when forecast variance is also largest. During boreal winter, probabilistic forecasts are able to discriminate between the El Niño, neutral and La Niña ENSO phases. Predictability of El Niño events is found to be highest of the three phases, with the lowest predictability for ENSO-neutral. Moreover, probability forecasts for El Niño and La Niña events are found to be mostly under-confident for high probability forecasts, and probabilities for neutral events are overestimated. A potential improvement in the probabilistic forecasts may be achieved by designing the climatological frequencies of the three forecast ENSO categories to match the observational definition based on ± 0.5 °C cutoffs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Development
Environmental Development Social Sciences-Geography, Planning and Development
CiteScore
8.40
自引率
1.90%
发文量
62
审稿时长
74 days
期刊介绍: Environmental Development provides a future oriented, pro-active, authoritative source of information and learning for researchers, postgraduate students, policymakers, and managers, and bridges the gap between fundamental research and the application in management and policy practices. It stimulates the exchange and coupling of traditional scientific knowledge on the environment, with the experiential knowledge among decision makers and other stakeholders and also connects natural sciences and social and behavioral sciences. Environmental Development includes and promotes scientific work from the non-western world, and also strengthens the collaboration between the developed and developing world. Further it links environmental research to broader issues of economic and social-cultural developments, and is intended to shorten the delays between research and publication, while ensuring thorough peer review. Environmental Development also creates a forum for transnational communication, discussion and global action. Environmental Development is open to a broad range of disciplines and authors. The journal welcomes, in particular, contributions from a younger generation of researchers, and papers expanding the frontiers of environmental sciences, pointing at new directions and innovative answers. All submissions to Environmental Development are reviewed using the general criteria of quality, originality, precision, importance of topic and insights, clarity of exposition, which are in keeping with the journal''s aims and scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信