Sarah E. McComic , Rui Chen , Shova Mishra , Werner J. Geldenhuys , Charles L. Cantrell , Edwin R. Burgess IV , Troy D. Anderson , Daniel R. Swale
{"title":"β-三酮细精子素对埃及伊蚊的毒性作用模式","authors":"Sarah E. McComic , Rui Chen , Shova Mishra , Werner J. Geldenhuys , Charles L. Cantrell , Edwin R. Burgess IV , Troy D. Anderson , Daniel R. Swale","doi":"10.1016/j.pestbp.2025.106401","DOIUrl":null,"url":null,"abstract":"<div><div>Leptospermone, a natural <em>β</em>-triketone and major constituent of manuka oil (<em>Leptospermum scoparium</em>), is an established inhibitor of plant HPPD and was identified to induce rapid knockdown and induce high toxicity to <em>Aedes aegypti</em> adults via topical and tarsal contact exposure with LD<sub>50</sub> values of 150 ng/mg of mosquito and 357 ng/cm<sup>2</sup>, respectively. Although toxic to mosquitoes, leptospermone was non-toxic to ticks, the honey bee, or the fruit fly indicating a high degree of insect specificity. Importantly, leptospermone was equally toxic to non-blood fed and blood-fed mosquitoes suggesting the mode of action is not via HPPD inhibition. Molecular modeling suggested high structural similarities between leptospermone and mammalian sulfonamide carbonic anhydrase (CA) inhibitors. In vitro potency assays with mosquito midgut homogenate or purified CA verify leptospermone inhibits <em>Ae. aegypti</em> CA, but not mammalian CAs. CAs are metalloenzymes that regulate the pH of tissues and ubiquitously expressed throughout insect tissues but are abundantly expressed in the mosquito midgut and, thus, we tested leptospermone to alter pH regulation in the mosquito midgut. Indeed, leptospermone significantly reduced the pH of <em>Ae. aegypti</em> midguts when compared to control mosquitoes which further supports the notion that leptospermone mode of action in insects is via inhibition of CA. These data verify leptospermone is an effective mosquitocide that induces rapid knockdown and toxicity to <em>Ae. aegypti</em> at doses that approach natural pyrethrins against pyrethroid-resistant mosquito strains. Further, the data indicate leptospermone mode of action is CA inhibition, which is a novel mosquitocide target and is different when compared to the mode of action in plants.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"210 ","pages":"Article 106401"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mode of toxicity of the β-triketone leptospermone to Aedes aegypti mosquitoes\",\"authors\":\"Sarah E. McComic , Rui Chen , Shova Mishra , Werner J. Geldenhuys , Charles L. Cantrell , Edwin R. Burgess IV , Troy D. Anderson , Daniel R. Swale\",\"doi\":\"10.1016/j.pestbp.2025.106401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leptospermone, a natural <em>β</em>-triketone and major constituent of manuka oil (<em>Leptospermum scoparium</em>), is an established inhibitor of plant HPPD and was identified to induce rapid knockdown and induce high toxicity to <em>Aedes aegypti</em> adults via topical and tarsal contact exposure with LD<sub>50</sub> values of 150 ng/mg of mosquito and 357 ng/cm<sup>2</sup>, respectively. Although toxic to mosquitoes, leptospermone was non-toxic to ticks, the honey bee, or the fruit fly indicating a high degree of insect specificity. Importantly, leptospermone was equally toxic to non-blood fed and blood-fed mosquitoes suggesting the mode of action is not via HPPD inhibition. Molecular modeling suggested high structural similarities between leptospermone and mammalian sulfonamide carbonic anhydrase (CA) inhibitors. In vitro potency assays with mosquito midgut homogenate or purified CA verify leptospermone inhibits <em>Ae. aegypti</em> CA, but not mammalian CAs. CAs are metalloenzymes that regulate the pH of tissues and ubiquitously expressed throughout insect tissues but are abundantly expressed in the mosquito midgut and, thus, we tested leptospermone to alter pH regulation in the mosquito midgut. Indeed, leptospermone significantly reduced the pH of <em>Ae. aegypti</em> midguts when compared to control mosquitoes which further supports the notion that leptospermone mode of action in insects is via inhibition of CA. These data verify leptospermone is an effective mosquitocide that induces rapid knockdown and toxicity to <em>Ae. aegypti</em> at doses that approach natural pyrethrins against pyrethroid-resistant mosquito strains. Further, the data indicate leptospermone mode of action is CA inhibition, which is a novel mosquitocide target and is different when compared to the mode of action in plants.</div></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":\"210 \",\"pages\":\"Article 106401\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357525001142\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525001142","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mode of toxicity of the β-triketone leptospermone to Aedes aegypti mosquitoes
Leptospermone, a natural β-triketone and major constituent of manuka oil (Leptospermum scoparium), is an established inhibitor of plant HPPD and was identified to induce rapid knockdown and induce high toxicity to Aedes aegypti adults via topical and tarsal contact exposure with LD50 values of 150 ng/mg of mosquito and 357 ng/cm2, respectively. Although toxic to mosquitoes, leptospermone was non-toxic to ticks, the honey bee, or the fruit fly indicating a high degree of insect specificity. Importantly, leptospermone was equally toxic to non-blood fed and blood-fed mosquitoes suggesting the mode of action is not via HPPD inhibition. Molecular modeling suggested high structural similarities between leptospermone and mammalian sulfonamide carbonic anhydrase (CA) inhibitors. In vitro potency assays with mosquito midgut homogenate or purified CA verify leptospermone inhibits Ae. aegypti CA, but not mammalian CAs. CAs are metalloenzymes that regulate the pH of tissues and ubiquitously expressed throughout insect tissues but are abundantly expressed in the mosquito midgut and, thus, we tested leptospermone to alter pH regulation in the mosquito midgut. Indeed, leptospermone significantly reduced the pH of Ae. aegypti midguts when compared to control mosquitoes which further supports the notion that leptospermone mode of action in insects is via inhibition of CA. These data verify leptospermone is an effective mosquitocide that induces rapid knockdown and toxicity to Ae. aegypti at doses that approach natural pyrethrins against pyrethroid-resistant mosquito strains. Further, the data indicate leptospermone mode of action is CA inhibition, which is a novel mosquitocide target and is different when compared to the mode of action in plants.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.