基于数据驱动优化的XGBoost和LightGBM预测稀土掺杂磷酸盐基玻璃中Judd-Ofelt参数

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Fahimeh Ahmadi , Mohsen Hajihassani , Stefanos Papanikolaou , Panagiotis G. Asteris
{"title":"基于数据驱动优化的XGBoost和LightGBM预测稀土掺杂磷酸盐基玻璃中Judd-Ofelt参数","authors":"Fahimeh Ahmadi ,&nbsp;Mohsen Hajihassani ,&nbsp;Stefanos Papanikolaou ,&nbsp;Panagiotis G. Asteris","doi":"10.1016/j.ceramint.2025.01.177","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced machine learning models, and more specifically the XGBoost and LightGBM models with Grey Wolf Optimization (GWO), can be utilized towards the prediction of the Judd-Ofelt (JO) parameters in rare-earth doped phosphate-based glasses. The JO parameters (<span><math><mrow><msub><mi>Ω</mi><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Ω</mi><mn>4</mn></msub></mrow></math></span>, and <span><math><mrow><msub><mi>Ω</mi><mn>6</mn></msub></mrow></math></span>) are critical for evaluating optical properties of rare-earth-doped materials, which are essential in applications, such as solid-state lasers, optical amplifiers, and three-dimensional displays. Traditional methods for estimating JO parameters involve complex methodologies that are particularly challenging for nanomaterials and powders. The use of the GWO-optimized XGBoost and LightGBM models promotes a novel and efficient approach to predict these parameters with high accuracy. The results of this study demonstrate that the combined GWO-LightGBM model outperforms others, achieving the lowest Mean Absolute Error (MAE) of 0.640 and the highest R<sup>2</sup> of 0.972 for predicting <span><math><mrow><msub><mi>Ω</mi><mn>2</mn></msub></mrow></math></span>, with comparable performance for <span><math><mrow><msub><mi>Ω</mi><mn>4</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Ω</mi><mn>6</mn></msub></mrow></math></span>. This innovative approach simplifies the parameter estimation methodology and significantly enhances predictive accuracy, offering a valuable tool for the development of advanced optical materials.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 10","pages":"Pages 13330-13344"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven optimized XGBoost and LightGBM for predicting the Judd-Ofelt parameters in rare-earth doped phosphate-based glasses\",\"authors\":\"Fahimeh Ahmadi ,&nbsp;Mohsen Hajihassani ,&nbsp;Stefanos Papanikolaou ,&nbsp;Panagiotis G. Asteris\",\"doi\":\"10.1016/j.ceramint.2025.01.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advanced machine learning models, and more specifically the XGBoost and LightGBM models with Grey Wolf Optimization (GWO), can be utilized towards the prediction of the Judd-Ofelt (JO) parameters in rare-earth doped phosphate-based glasses. The JO parameters (<span><math><mrow><msub><mi>Ω</mi><mn>2</mn></msub></mrow></math></span>, <span><math><mrow><msub><mi>Ω</mi><mn>4</mn></msub></mrow></math></span>, and <span><math><mrow><msub><mi>Ω</mi><mn>6</mn></msub></mrow></math></span>) are critical for evaluating optical properties of rare-earth-doped materials, which are essential in applications, such as solid-state lasers, optical amplifiers, and three-dimensional displays. Traditional methods for estimating JO parameters involve complex methodologies that are particularly challenging for nanomaterials and powders. The use of the GWO-optimized XGBoost and LightGBM models promotes a novel and efficient approach to predict these parameters with high accuracy. The results of this study demonstrate that the combined GWO-LightGBM model outperforms others, achieving the lowest Mean Absolute Error (MAE) of 0.640 and the highest R<sup>2</sup> of 0.972 for predicting <span><math><mrow><msub><mi>Ω</mi><mn>2</mn></msub></mrow></math></span>, with comparable performance for <span><math><mrow><msub><mi>Ω</mi><mn>4</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>Ω</mi><mn>6</mn></msub></mrow></math></span>. This innovative approach simplifies the parameter estimation methodology and significantly enhances predictive accuracy, offering a valuable tool for the development of advanced optical materials.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"51 10\",\"pages\":\"Pages 13330-13344\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884225002044\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225002044","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

先进的机器学习模型,特别是带有灰狼优化(GWO)的XGBoost和LightGBM模型,可以用于预测稀土掺杂磷酸盐基玻璃中的Judd-Ofelt (JO)参数。JO参数(Ω2, Ω4和Ω6)对于评估稀土掺杂材料的光学特性至关重要,这在固态激光器,光学放大器和三维显示器等应用中是必不可少的。估计JO参数的传统方法涉及复杂的方法,对纳米材料和粉末尤其具有挑战性。使用gwo优化的XGBoost和LightGBM模型促进了一种新颖有效的方法来高精度地预测这些参数。本研究结果表明,GWO-LightGBM联合模型的预测效果优于其他模型,预测Ω2的平均绝对误差(MAE)最低为0.640,R2最高为0.972,对Ω4和Ω6的预测效果相当。这种创新的方法简化了参数估计方法,显著提高了预测精度,为先进光学材料的开发提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven optimized XGBoost and LightGBM for predicting the Judd-Ofelt parameters in rare-earth doped phosphate-based glasses
Advanced machine learning models, and more specifically the XGBoost and LightGBM models with Grey Wolf Optimization (GWO), can be utilized towards the prediction of the Judd-Ofelt (JO) parameters in rare-earth doped phosphate-based glasses. The JO parameters (Ω2, Ω4, and Ω6) are critical for evaluating optical properties of rare-earth-doped materials, which are essential in applications, such as solid-state lasers, optical amplifiers, and three-dimensional displays. Traditional methods for estimating JO parameters involve complex methodologies that are particularly challenging for nanomaterials and powders. The use of the GWO-optimized XGBoost and LightGBM models promotes a novel and efficient approach to predict these parameters with high accuracy. The results of this study demonstrate that the combined GWO-LightGBM model outperforms others, achieving the lowest Mean Absolute Error (MAE) of 0.640 and the highest R2 of 0.972 for predicting Ω2, with comparable performance for Ω4 and Ω6. This innovative approach simplifies the parameter estimation methodology and significantly enhances predictive accuracy, offering a valuable tool for the development of advanced optical materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信