基于ai - ecg的临床决策支持软件识别低LVEF的多中心实用实施研究:临床试验设计和方法

IF 1.3 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Francisco Lopez-Jimenez , Heather M. Alger , Zachi I. Attia , Barbara Barry , Ranee Chatterjee , Rowena Dolor , Paul A. Friedman , Stephen J. Greene , Jason Greenwood , Vinay Gundurao , Sarah Hackett , Prerak Jain , Anja Kinaszczuk , Ketan Mehta , Jason O'Grady , Ambarish Pandey , Christopher Pullins , Arjun R. Puranik , Mohan Krishna Ranganathan , David Rushlow , Samir Awasthi
{"title":"基于ai - ecg的临床决策支持软件识别低LVEF的多中心实用实施研究:临床试验设计和方法","authors":"Francisco Lopez-Jimenez ,&nbsp;Heather M. Alger ,&nbsp;Zachi I. Attia ,&nbsp;Barbara Barry ,&nbsp;Ranee Chatterjee ,&nbsp;Rowena Dolor ,&nbsp;Paul A. Friedman ,&nbsp;Stephen J. Greene ,&nbsp;Jason Greenwood ,&nbsp;Vinay Gundurao ,&nbsp;Sarah Hackett ,&nbsp;Prerak Jain ,&nbsp;Anja Kinaszczuk ,&nbsp;Ketan Mehta ,&nbsp;Jason O'Grady ,&nbsp;Ambarish Pandey ,&nbsp;Christopher Pullins ,&nbsp;Arjun R. Puranik ,&nbsp;Mohan Krishna Ranganathan ,&nbsp;David Rushlow ,&nbsp;Samir Awasthi","doi":"10.1016/j.ahjo.2025.100528","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.</div></div><div><h3>Methods</h3><div>AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during &gt;32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.</div></div><div><h3>Results</h3><div>Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (<span><span>NCT05867407</span><svg><path></path></svg></span>).</div></div><div><h3>Conclusion</h3><div>AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.</div></div>","PeriodicalId":72158,"journal":{"name":"American heart journal plus : cardiology research and practice","volume":"54 ","pages":"Article 100528"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multicenter pragmatic implementation study of AI-ECG-based clinical decision support software to identify low LVEF: Clinical trial design and methods\",\"authors\":\"Francisco Lopez-Jimenez ,&nbsp;Heather M. Alger ,&nbsp;Zachi I. Attia ,&nbsp;Barbara Barry ,&nbsp;Ranee Chatterjee ,&nbsp;Rowena Dolor ,&nbsp;Paul A. Friedman ,&nbsp;Stephen J. Greene ,&nbsp;Jason Greenwood ,&nbsp;Vinay Gundurao ,&nbsp;Sarah Hackett ,&nbsp;Prerak Jain ,&nbsp;Anja Kinaszczuk ,&nbsp;Ketan Mehta ,&nbsp;Jason O'Grady ,&nbsp;Ambarish Pandey ,&nbsp;Christopher Pullins ,&nbsp;Arjun R. Puranik ,&nbsp;Mohan Krishna Ranganathan ,&nbsp;David Rushlow ,&nbsp;Samir Awasthi\",\"doi\":\"10.1016/j.ahjo.2025.100528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.</div></div><div><h3>Methods</h3><div>AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during &gt;32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.</div></div><div><h3>Results</h3><div>Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (<span><span>NCT05867407</span><svg><path></path></svg></span>).</div></div><div><h3>Conclusion</h3><div>AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.</div></div>\",\"PeriodicalId\":72158,\"journal\":{\"name\":\"American heart journal plus : cardiology research and practice\",\"volume\":\"54 \",\"pages\":\"Article 100528\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American heart journal plus : cardiology research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266660222500031X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American heart journal plus : cardiology research and practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266660222500031X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)算法可以使用心电图(ECG)数据检测或预测心血管疾病。临床研究已经评估了ECG-AI算法,包括最近的一项单中心研究,该研究评估了向临床医生提供ECG-AI结果时的结果。基于ECG-AI的临床决策支持软件识别低LVEF的多中心实用实施研究(AIM ECG-AI)将评估集成在电子健康记录(EHR)中的临床决策支持软件(CDSS)的临床影响,以在常规门诊护理期间为临床医生提供即时ECG-AI结果。方法:aim ECG-AI是一项多中心、集群随机试验,招募和随机分配临床医生接受CDSS(干预)或提供常规护理。临床医生从5个地理位置不同的卫生系统中招募,并聚集在护理团队一级。AIM ECG- ai将评估32,000名符合条件的成年患者临床就诊期间提供的临床护理,这些患者没有低LVEF病史,并且在卫生系统的电子病历中记录了数字ECG,并进行90天的随访。研究数据包括临床医生调查,研究软件指标和EHR数据,作为临床医生决策的宣读。AIM ECG-AI将通过超声心动图评估左心室射血分数≤40%的检测,并具有探索性终点。亚组分析将评估与结果相关的卫生系统、临床医生和患者水平特征(NCT05867407)。aim ECG-AI是第一个对ehr集成的多点临床评估,在临床工作流程中提供ECG-AI结果的点护理CDSS。这些发现将为临床重点软件设计提供有价值的见解,将人工智能带入常规临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multicenter pragmatic implementation study of AI-ECG-based clinical decision support software to identify low LVEF: Clinical trial design and methods

Background

Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.

Methods

AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during >32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.

Results

Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (NCT05867407).

Conclusion

AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
59 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信