锥中Sobolev不等式的稳定性

IF 2.4 2区 数学 Q1 MATHEMATICS
Giulio Ciraolo , Filomena Pacella , Camilla Chiara Polvara
{"title":"锥中Sobolev不等式的稳定性","authors":"Giulio Ciraolo ,&nbsp;Filomena Pacella ,&nbsp;Camilla Chiara Polvara","doi":"10.1016/j.jde.2025.113325","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a quantitative Sobolev inequality in cones of Bianchi-Egnell type, which implies a stability property. Our result holds for any cone as long as the minimizers of the Sobolev quotient are nondegenerate. When the minimizers are the classical bubbles we have more precise results. Finally, we show that local estimates are not enough to get the optimal constant for the quantitative Sobolev inequality.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"433 ","pages":"Article 113325"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability for the Sobolev inequality in cones\",\"authors\":\"Giulio Ciraolo ,&nbsp;Filomena Pacella ,&nbsp;Camilla Chiara Polvara\",\"doi\":\"10.1016/j.jde.2025.113325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove a quantitative Sobolev inequality in cones of Bianchi-Egnell type, which implies a stability property. Our result holds for any cone as long as the minimizers of the Sobolev quotient are nondegenerate. When the minimizers are the classical bubbles we have more precise results. Finally, we show that local estimates are not enough to get the optimal constant for the quantitative Sobolev inequality.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"433 \",\"pages\":\"Article 113325\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625003523\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003523","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了Bianchi-Egnell型锥上的一个定量Sobolev不等式,它暗示了一个稳定性性质。我们的结果适用于任何锥,只要Sobolev商的极小值是非简并的。当最小值是经典气泡时,我们有更精确的结果。最后,我们证明了局部估计不足以得到定量Sobolev不等式的最优常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability for the Sobolev inequality in cones
We prove a quantitative Sobolev inequality in cones of Bianchi-Egnell type, which implies a stability property. Our result holds for any cone as long as the minimizers of the Sobolev quotient are nondegenerate. When the minimizers are the classical bubbles we have more precise results. Finally, we show that local estimates are not enough to get the optimal constant for the quantitative Sobolev inequality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信