{"title":"以废咖啡渣为再生建筑材料的地聚合物砂浆的性能:实验与预测分析","authors":"Ahmet Ferdi Şenol","doi":"10.1016/j.hybadv.2025.100479","DOIUrl":null,"url":null,"abstract":"<div><div>Spent coffee grounds ash (K) is investigated as a sustainable partial sand replacement (0 %, 5 %, 10 %, 15 %) in geopolymer mortars based on granulated blast furnace slag. This study assesses workability, mechanical performance, high-temperature resistance, and microstructure through experimental testing and statistical analysis. Key findings indicate that K content significantly influences workability, strength, and physical properties. Replacing sand with K reduced workability by up to 21 % due to its finer particle size and porosity. The K5 series, containing 5 % K, exhibited the highest compressive strength improvement, with gains of 8.9 % and 16.3 % at 7 and 28 days, respectively, compared to the control. However, higher K contents (10 %, 15 %) negatively impacted mechanical performance. At elevated temperatures, significant mass loss occurred up to 400 °C, after which it stabilized at 600 °C while maintaining structural integrity. Porosity and water absorption increased with K content, except in K5. Microstructural analysis revealed that the K5 series formed a dense, crack-minimal matrix, whereas K10 and K15 exhibited more microcracking and porosity. Statistical models confirmed that temperature had the greatest influence on compressive and flexural strengths, whereas K content significantly affected mass loss.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"10 ","pages":"Article 100479"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of geopolymer mortar incorporating spent coffee grounds as a recycled building material: An experimental and predictive analysis\",\"authors\":\"Ahmet Ferdi Şenol\",\"doi\":\"10.1016/j.hybadv.2025.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spent coffee grounds ash (K) is investigated as a sustainable partial sand replacement (0 %, 5 %, 10 %, 15 %) in geopolymer mortars based on granulated blast furnace slag. This study assesses workability, mechanical performance, high-temperature resistance, and microstructure through experimental testing and statistical analysis. Key findings indicate that K content significantly influences workability, strength, and physical properties. Replacing sand with K reduced workability by up to 21 % due to its finer particle size and porosity. The K5 series, containing 5 % K, exhibited the highest compressive strength improvement, with gains of 8.9 % and 16.3 % at 7 and 28 days, respectively, compared to the control. However, higher K contents (10 %, 15 %) negatively impacted mechanical performance. At elevated temperatures, significant mass loss occurred up to 400 °C, after which it stabilized at 600 °C while maintaining structural integrity. Porosity and water absorption increased with K content, except in K5. Microstructural analysis revealed that the K5 series formed a dense, crack-minimal matrix, whereas K10 and K15 exhibited more microcracking and porosity. Statistical models confirmed that temperature had the greatest influence on compressive and flexural strengths, whereas K content significantly affected mass loss.</div></div>\",\"PeriodicalId\":100614,\"journal\":{\"name\":\"Hybrid Advances\",\"volume\":\"10 \",\"pages\":\"Article 100479\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hybrid Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773207X25001034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X25001034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of geopolymer mortar incorporating spent coffee grounds as a recycled building material: An experimental and predictive analysis
Spent coffee grounds ash (K) is investigated as a sustainable partial sand replacement (0 %, 5 %, 10 %, 15 %) in geopolymer mortars based on granulated blast furnace slag. This study assesses workability, mechanical performance, high-temperature resistance, and microstructure through experimental testing and statistical analysis. Key findings indicate that K content significantly influences workability, strength, and physical properties. Replacing sand with K reduced workability by up to 21 % due to its finer particle size and porosity. The K5 series, containing 5 % K, exhibited the highest compressive strength improvement, with gains of 8.9 % and 16.3 % at 7 and 28 days, respectively, compared to the control. However, higher K contents (10 %, 15 %) negatively impacted mechanical performance. At elevated temperatures, significant mass loss occurred up to 400 °C, after which it stabilized at 600 °C while maintaining structural integrity. Porosity and water absorption increased with K content, except in K5. Microstructural analysis revealed that the K5 series formed a dense, crack-minimal matrix, whereas K10 and K15 exhibited more microcracking and porosity. Statistical models confirmed that temperature had the greatest influence on compressive and flexural strengths, whereas K content significantly affected mass loss.