Sneha Samal, David Vokoun, Ivo Stachiv, Petr Šittner
{"title":"采用热等离子喷涂技术模拟不锈钢基体上NiTi涂层的热应力预测","authors":"Sneha Samal, David Vokoun, Ivo Stachiv, Petr Šittner","doi":"10.1016/j.ceramint.2024.10.328","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal stresses arise during the thermal plasma spraying of composite coatings, influenced by the differing thermophysical properties of the substrate and coating materials. This study focuses on a thick coating with a top NiTi layer and a base stainless steel (AISI 304) substrate, along with an epoxy carrier layer. Initially, the substrate is stress-free at the deposition temperature of 1400 °C. Once the coating is applied, the carrier layer activates at 150 °C, introducing thermal stresses before cooling to room temperature (20 °C). Using COMSOL Multiphysics, we examine stress distribution within the assembly at both 150 °C and room temperature. The model treats the thick plate as a two-dimensional solid, with layers assumed to be isotropic and linear elastic. The higher coefficient of thermal expansion in the substrate (17.3 × 10⁻⁶) compared to the coating (11 × 10⁻⁶) results in tensile stresses in the substrate and compressive stresses in the coating.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 10","pages":"Pages 12337-12345"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of thermal stress predictions for NiTi coating on a stainless-steel substrate using thermal plasma spraying\",\"authors\":\"Sneha Samal, David Vokoun, Ivo Stachiv, Petr Šittner\",\"doi\":\"10.1016/j.ceramint.2024.10.328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal stresses arise during the thermal plasma spraying of composite coatings, influenced by the differing thermophysical properties of the substrate and coating materials. This study focuses on a thick coating with a top NiTi layer and a base stainless steel (AISI 304) substrate, along with an epoxy carrier layer. Initially, the substrate is stress-free at the deposition temperature of 1400 °C. Once the coating is applied, the carrier layer activates at 150 °C, introducing thermal stresses before cooling to room temperature (20 °C). Using COMSOL Multiphysics, we examine stress distribution within the assembly at both 150 °C and room temperature. The model treats the thick plate as a two-dimensional solid, with layers assumed to be isotropic and linear elastic. The higher coefficient of thermal expansion in the substrate (17.3 × 10⁻⁶) compared to the coating (11 × 10⁻⁶) results in tensile stresses in the substrate and compressive stresses in the coating.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"51 10\",\"pages\":\"Pages 12337-12345\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224048491\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224048491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Simulation of thermal stress predictions for NiTi coating on a stainless-steel substrate using thermal plasma spraying
Thermal stresses arise during the thermal plasma spraying of composite coatings, influenced by the differing thermophysical properties of the substrate and coating materials. This study focuses on a thick coating with a top NiTi layer and a base stainless steel (AISI 304) substrate, along with an epoxy carrier layer. Initially, the substrate is stress-free at the deposition temperature of 1400 °C. Once the coating is applied, the carrier layer activates at 150 °C, introducing thermal stresses before cooling to room temperature (20 °C). Using COMSOL Multiphysics, we examine stress distribution within the assembly at both 150 °C and room temperature. The model treats the thick plate as a two-dimensional solid, with layers assumed to be isotropic and linear elastic. The higher coefficient of thermal expansion in the substrate (17.3 × 10⁻⁶) compared to the coating (11 × 10⁻⁶) results in tensile stresses in the substrate and compressive stresses in the coating.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.