从二氧化碳基聚碳酸酯中化学和机械可回收的玻璃体

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seiyoung Yoon, Satej S. Joshi, Sophia Aracri, Yuliana Ospina-Yepes, Devavrat Sathe, Mark D. Foster*, Junpeng Wang* and James M. Eagan*, 
{"title":"从二氧化碳基聚碳酸酯中化学和机械可回收的玻璃体","authors":"Seiyoung Yoon,&nbsp;Satej S. Joshi,&nbsp;Sophia Aracri,&nbsp;Yuliana Ospina-Yepes,&nbsp;Devavrat Sathe,&nbsp;Mark D. Foster*,&nbsp;Junpeng Wang* and James M. Eagan*,&nbsp;","doi":"10.1021/acsapm.5c0032610.1021/acsapm.5c00326","DOIUrl":null,"url":null,"abstract":"<p >Designing thermoset materials with dynamic cross-links is an important strategy to mitigate rising global carbon dioxide emission levels. The development of polymers from sustainable feedstocks, with efficient manufacturing methods, for high-value applications, and with circular end-of-use solutions is essential for advancing material technologies. One approach involves exploiting carbon dioxide itself as a feedstock to create high-performance, sustainable materials by enchaining 50 mol % CO<sub>2</sub> via copolymerization with epoxides to yield polycarbonates. This work describes the synthesis, end-functionalization, and curing of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) into β-hydroxy ester vitrimers. These vitrimers demonstrate the ability to be mechanically reprocessed up to 3 times with retention of the material’s properties through dynamic transesterification exchange reactions. The polycarbonate vitrimers with gel fractions exceeding 90% exhibit high tensile strength (&gt;50 MPa) and Young’s modulus (&gt;2 GPa), achieved by varying the repeat unit structure in the polymer backbone from the low <i>T</i><sub>g</sub> PPC to the more rigid high <i>T</i><sub>g</sub> PCHC structures. Owing to an entropically favorable chain backbiting mechanism, the network chains can be cleaved and depolymerized into cyclic small molecules. In the case of PCHC, this process enables repolymerization back to polycarbonates with 69 wt % CO<sub>2</sub> retention through life cycles. The promising mechanical performance and recyclability of these CO<sub>2</sub>-based polycarbonate vitrimers indicate their potential for sustainable, high-performance materials, paving the way for future innovations in circular polymer technologies and carbon capture utilization.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 7","pages":"4561–4571 4561–4571"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically and Mechanically Recyclable Vitrimers from Carbon Dioxide-Based Polycarbonates\",\"authors\":\"Seiyoung Yoon,&nbsp;Satej S. Joshi,&nbsp;Sophia Aracri,&nbsp;Yuliana Ospina-Yepes,&nbsp;Devavrat Sathe,&nbsp;Mark D. Foster*,&nbsp;Junpeng Wang* and James M. Eagan*,&nbsp;\",\"doi\":\"10.1021/acsapm.5c0032610.1021/acsapm.5c00326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Designing thermoset materials with dynamic cross-links is an important strategy to mitigate rising global carbon dioxide emission levels. The development of polymers from sustainable feedstocks, with efficient manufacturing methods, for high-value applications, and with circular end-of-use solutions is essential for advancing material technologies. One approach involves exploiting carbon dioxide itself as a feedstock to create high-performance, sustainable materials by enchaining 50 mol % CO<sub>2</sub> via copolymerization with epoxides to yield polycarbonates. This work describes the synthesis, end-functionalization, and curing of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) into β-hydroxy ester vitrimers. These vitrimers demonstrate the ability to be mechanically reprocessed up to 3 times with retention of the material’s properties through dynamic transesterification exchange reactions. The polycarbonate vitrimers with gel fractions exceeding 90% exhibit high tensile strength (&gt;50 MPa) and Young’s modulus (&gt;2 GPa), achieved by varying the repeat unit structure in the polymer backbone from the low <i>T</i><sub>g</sub> PPC to the more rigid high <i>T</i><sub>g</sub> PCHC structures. Owing to an entropically favorable chain backbiting mechanism, the network chains can be cleaved and depolymerized into cyclic small molecules. In the case of PCHC, this process enables repolymerization back to polycarbonates with 69 wt % CO<sub>2</sub> retention through life cycles. The promising mechanical performance and recyclability of these CO<sub>2</sub>-based polycarbonate vitrimers indicate their potential for sustainable, high-performance materials, paving the way for future innovations in circular polymer technologies and carbon capture utilization.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 7\",\"pages\":\"4561–4571 4561–4571\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.5c00326\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.5c00326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计具有动态交联的热固性材料是缓解全球二氧化碳排放水平上升的重要策略。从可持续原料、高效制造方法、高价值应用和循环终端解决方案中开发聚合物对于推进材料技术至关重要。一种方法是利用二氧化碳本身作为原料,通过与环氧化物共聚,将50 mol %的二氧化碳连接在一起,生成聚碳酸酯,从而制造出高性能、可持续的材料。本文描述了聚碳酸丙烯(PPC)和聚碳酸环己烯(PCHC)的合成、端功能化和固化成β-羟基酯玻璃聚合体。这些玻璃体证明了通过动态酯交换反应保留材料性质的机械再加工多达3次的能力。凝胶含量超过90%的聚碳酸酯玻璃体通过改变聚合物主链中的重复单元结构,从低Tg的PPC结构到更刚性的高Tg的PCHC结构,表现出较高的抗拉强度(> 50mpa)和杨氏模量(> 2gpa)。由于熵有利的链背咬机制,网络链可以被劈裂并解聚成环状小分子。在PCHC的情况下,该工艺可以在整个生命周期内以69%的CO2保留率重新聚合回聚碳酸酯。这些基于二氧化碳的聚碳酸酯玻璃体具有良好的机械性能和可回收性,表明它们具有可持续、高性能材料的潜力,为未来循环聚合物技术和碳捕获利用的创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemically and Mechanically Recyclable Vitrimers from Carbon Dioxide-Based Polycarbonates

Chemically and Mechanically Recyclable Vitrimers from Carbon Dioxide-Based Polycarbonates

Designing thermoset materials with dynamic cross-links is an important strategy to mitigate rising global carbon dioxide emission levels. The development of polymers from sustainable feedstocks, with efficient manufacturing methods, for high-value applications, and with circular end-of-use solutions is essential for advancing material technologies. One approach involves exploiting carbon dioxide itself as a feedstock to create high-performance, sustainable materials by enchaining 50 mol % CO2 via copolymerization with epoxides to yield polycarbonates. This work describes the synthesis, end-functionalization, and curing of poly(propylene carbonate) (PPC) and poly(cyclohexene carbonate) (PCHC) into β-hydroxy ester vitrimers. These vitrimers demonstrate the ability to be mechanically reprocessed up to 3 times with retention of the material’s properties through dynamic transesterification exchange reactions. The polycarbonate vitrimers with gel fractions exceeding 90% exhibit high tensile strength (>50 MPa) and Young’s modulus (>2 GPa), achieved by varying the repeat unit structure in the polymer backbone from the low Tg PPC to the more rigid high Tg PCHC structures. Owing to an entropically favorable chain backbiting mechanism, the network chains can be cleaved and depolymerized into cyclic small molecules. In the case of PCHC, this process enables repolymerization back to polycarbonates with 69 wt % CO2 retention through life cycles. The promising mechanical performance and recyclability of these CO2-based polycarbonate vitrimers indicate their potential for sustainable, high-performance materials, paving the way for future innovations in circular polymer technologies and carbon capture utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信