多组分溶剂工程太阳能电池二维/三维均匀钙钛矿异质结

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yinghao Xu, Shaokuan Gong, Zhinan Zhang, Shaofu Wang, Shengjie Du, Dexin Pu, Wenbo Li, Yang Zheng, Ke Wu, Ti Wang, Weijun Ke, Xingzhong Zhao, Wei Liu, Guojia Fang*, Xihan Chen* and Zhenhua Yu*, 
{"title":"多组分溶剂工程太阳能电池二维/三维均匀钙钛矿异质结","authors":"Yinghao Xu,&nbsp;Shaokuan Gong,&nbsp;Zhinan Zhang,&nbsp;Shaofu Wang,&nbsp;Shengjie Du,&nbsp;Dexin Pu,&nbsp;Wenbo Li,&nbsp;Yang Zheng,&nbsp;Ke Wu,&nbsp;Ti Wang,&nbsp;Weijun Ke,&nbsp;Xingzhong Zhao,&nbsp;Wei Liu,&nbsp;Guojia Fang*,&nbsp;Xihan Chen* and Zhenhua Yu*,&nbsp;","doi":"10.1021/acsenergylett.5c0039310.1021/acsenergylett.5c00393","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a multicomponent solvent engineering approach for constructing high-quality 2D/3D metal halide perovskite (MHP) heterostructures, addressing vertical inhomogeneity in ultrathin 2D capping layers for perovskite solar cells (PSCs). Through synergistic solvent coordination, isopropyl alcohol spatially confines 2D layer formation at the 3D perovskite surface, while dimethyl sulfoxide induces controlled 3D matrix dissolution to enable vertical phase propagation. Acetonitrile optimizes solvent penetration dynamics, achieving 2D layers with exceptional spatial homogeneity across multiple cation systems. The optimized PDAI<sub>2</sub>-derived 2D/3D architecture demonstrates a certified power conversion efficiency (PCE) of 25.57% (champion 26.14%) with an 85.62% fill factor, attributed to enhanced interfacial charge transport at the C<sub>60</sub>/perovskite junction through reduced nonradiative recombination. The spatially uniform 2D capping layer confers remarkable operational stability, retaining 92% initial PCE after 5,000 h dark aging and 90% efficiency following 1,700 h maximum power point tracking under continuous 1-sun illumination.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 4","pages":"2035–2044 2035–2044"},"PeriodicalIF":19.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multicomponent Solvent Engineered Spatially Uniform 2D/3D Perovskite Heterojunction for Solar Cells\",\"authors\":\"Yinghao Xu,&nbsp;Shaokuan Gong,&nbsp;Zhinan Zhang,&nbsp;Shaofu Wang,&nbsp;Shengjie Du,&nbsp;Dexin Pu,&nbsp;Wenbo Li,&nbsp;Yang Zheng,&nbsp;Ke Wu,&nbsp;Ti Wang,&nbsp;Weijun Ke,&nbsp;Xingzhong Zhao,&nbsp;Wei Liu,&nbsp;Guojia Fang*,&nbsp;Xihan Chen* and Zhenhua Yu*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c0039310.1021/acsenergylett.5c00393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study introduces a multicomponent solvent engineering approach for constructing high-quality 2D/3D metal halide perovskite (MHP) heterostructures, addressing vertical inhomogeneity in ultrathin 2D capping layers for perovskite solar cells (PSCs). Through synergistic solvent coordination, isopropyl alcohol spatially confines 2D layer formation at the 3D perovskite surface, while dimethyl sulfoxide induces controlled 3D matrix dissolution to enable vertical phase propagation. Acetonitrile optimizes solvent penetration dynamics, achieving 2D layers with exceptional spatial homogeneity across multiple cation systems. The optimized PDAI<sub>2</sub>-derived 2D/3D architecture demonstrates a certified power conversion efficiency (PCE) of 25.57% (champion 26.14%) with an 85.62% fill factor, attributed to enhanced interfacial charge transport at the C<sub>60</sub>/perovskite junction through reduced nonradiative recombination. The spatially uniform 2D capping layer confers remarkable operational stability, retaining 92% initial PCE after 5,000 h dark aging and 90% efficiency following 1,700 h maximum power point tracking under continuous 1-sun illumination.</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 4\",\"pages\":\"2035–2044 2035–2044\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00393\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00393","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种多组分溶剂工程方法,用于构建高质量的2D/3D金属卤化物钙钛矿(MHP)异质结构,解决钙钛矿太阳能电池(PSCs)超薄2D盖层的垂直不均匀性问题。通过协同溶剂配位,异丙醇在空间上限制了三维钙钛矿表面二维层的形成,而二甲基亚砜则诱导了受控的三维基质溶解,从而实现了垂直相的传播。乙腈优化了溶剂渗透动力学,在多个阳离子体系中实现了具有优异空间均匀性的二维层。优化后的pdai2衍生的2D/3D结构显示出经认证的功率转换效率(PCE)为25.57%(冠军26.14%),填充系数为85.62%,这归因于通过减少非辐射重组增强了C60/钙钛矿结处的界面电荷传输。空间均匀的2D封盖层提供了卓越的运行稳定性,在5000小时的暗老化后保持92%的初始PCE,在连续1个太阳照射下1700小时的最大功率点跟踪后保持90%的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multicomponent Solvent Engineered Spatially Uniform 2D/3D Perovskite Heterojunction for Solar Cells

Multicomponent Solvent Engineered Spatially Uniform 2D/3D Perovskite Heterojunction for Solar Cells

This study introduces a multicomponent solvent engineering approach for constructing high-quality 2D/3D metal halide perovskite (MHP) heterostructures, addressing vertical inhomogeneity in ultrathin 2D capping layers for perovskite solar cells (PSCs). Through synergistic solvent coordination, isopropyl alcohol spatially confines 2D layer formation at the 3D perovskite surface, while dimethyl sulfoxide induces controlled 3D matrix dissolution to enable vertical phase propagation. Acetonitrile optimizes solvent penetration dynamics, achieving 2D layers with exceptional spatial homogeneity across multiple cation systems. The optimized PDAI2-derived 2D/3D architecture demonstrates a certified power conversion efficiency (PCE) of 25.57% (champion 26.14%) with an 85.62% fill factor, attributed to enhanced interfacial charge transport at the C60/perovskite junction through reduced nonradiative recombination. The spatially uniform 2D capping layer confers remarkable operational stability, retaining 92% initial PCE after 5,000 h dark aging and 90% efficiency following 1,700 h maximum power point tracking under continuous 1-sun illumination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信