Meijia Liu, Liyan Wang*, Xing Zeng, Ao Zhang, Beiyuan Liu, Lingwei Kong, Shanshan Xiao, Fei Bi, Li Zhao, Lei Chen and Yingqi Li*,
{"title":"泡沫镍层次化Ni3S2/CoS2纳米片阵列作为锂离子电池优良负极材料","authors":"Meijia Liu, Liyan Wang*, Xing Zeng, Ao Zhang, Beiyuan Liu, Lingwei Kong, Shanshan Xiao, Fei Bi, Li Zhao, Lei Chen and Yingqi Li*, ","doi":"10.1021/acsanm.5c0038810.1021/acsanm.5c00388","DOIUrl":null,"url":null,"abstract":"<p >The fabrication of bimetallic sulfide integrated anodes possessing stable configurations is deemed a potent tactic to surmount the drawbacks of inadequate charge transfer and pronounced volume expansion afflicting single metal sulfides within lithium-ion batteries (LIBs). Herein, the hierarchical bimetallic sulfide Ni<sub>3</sub>S<sub>2</sub>/CoS<sub>2</sub> nanosheet arrays on Ni foam (NF) are procured via a two-step hydrothermal growth protocol. The design of an integrated anode with nanosheet array architecture and the synergistic interaction of bimetallic ions can furnish copious electroactive sites, expedite ion/electron translocation, accelerate the dynamic reaction, and consequently avert structural impairment. The Ni<sub>3</sub>S<sub>2</sub>/CoS<sub>2</sub>/NF anode manifests a specific capacity of 2307 mAh g<sup>–1</sup> at 0.64 A g<sup>–1</sup> and sustains 80.4% of its capacity after 1000 cycles at 1.28 A g<sup>–1</sup>. This discovery functions as a momentous benchmark for the exploitation of other bimetallic sulfides for LIBs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 14","pages":"7124–7131 7124–7131"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Ni3S2/CoS2 Nanosheet Arrays on Ni Foam as Superior Anode Materials for Lithium-Ion Batteries\",\"authors\":\"Meijia Liu, Liyan Wang*, Xing Zeng, Ao Zhang, Beiyuan Liu, Lingwei Kong, Shanshan Xiao, Fei Bi, Li Zhao, Lei Chen and Yingqi Li*, \",\"doi\":\"10.1021/acsanm.5c0038810.1021/acsanm.5c00388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The fabrication of bimetallic sulfide integrated anodes possessing stable configurations is deemed a potent tactic to surmount the drawbacks of inadequate charge transfer and pronounced volume expansion afflicting single metal sulfides within lithium-ion batteries (LIBs). Herein, the hierarchical bimetallic sulfide Ni<sub>3</sub>S<sub>2</sub>/CoS<sub>2</sub> nanosheet arrays on Ni foam (NF) are procured via a two-step hydrothermal growth protocol. The design of an integrated anode with nanosheet array architecture and the synergistic interaction of bimetallic ions can furnish copious electroactive sites, expedite ion/electron translocation, accelerate the dynamic reaction, and consequently avert structural impairment. The Ni<sub>3</sub>S<sub>2</sub>/CoS<sub>2</sub>/NF anode manifests a specific capacity of 2307 mAh g<sup>–1</sup> at 0.64 A g<sup>–1</sup> and sustains 80.4% of its capacity after 1000 cycles at 1.28 A g<sup>–1</sup>. This discovery functions as a momentous benchmark for the exploitation of other bimetallic sulfides for LIBs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 14\",\"pages\":\"7124–7131 7124–7131\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c00388\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
制造具有稳定结构的双金属硫化物集成阳极被认为是克服锂离子电池(lib)中单金属硫化物电荷转移不足和体积膨胀严重的缺点的有效策略。本文采用两步水热生长方法在泡沫镍(NF)表面制备了层叠式双金属硫化物Ni3S2/CoS2纳米片阵列。采用纳米片阵列结构和双金属离子的协同作用设计集成阳极,可以提供丰富的电活性位点,加速离子/电子的易位,加速动态反应,从而避免结构损伤。Ni3S2/CoS2/NF阳极在0.64 a g-1下的比容量为2307 mAh g-1,在1.28 a g-1下循环1000次后保持80.4%的容量。这一发现为开发用于lib的其他双金属硫化物提供了一个重要的基准。
Hierarchical Ni3S2/CoS2 Nanosheet Arrays on Ni Foam as Superior Anode Materials for Lithium-Ion Batteries
The fabrication of bimetallic sulfide integrated anodes possessing stable configurations is deemed a potent tactic to surmount the drawbacks of inadequate charge transfer and pronounced volume expansion afflicting single metal sulfides within lithium-ion batteries (LIBs). Herein, the hierarchical bimetallic sulfide Ni3S2/CoS2 nanosheet arrays on Ni foam (NF) are procured via a two-step hydrothermal growth protocol. The design of an integrated anode with nanosheet array architecture and the synergistic interaction of bimetallic ions can furnish copious electroactive sites, expedite ion/electron translocation, accelerate the dynamic reaction, and consequently avert structural impairment. The Ni3S2/CoS2/NF anode manifests a specific capacity of 2307 mAh g–1 at 0.64 A g–1 and sustains 80.4% of its capacity after 1000 cycles at 1.28 A g–1. This discovery functions as a momentous benchmark for the exploitation of other bimetallic sulfides for LIBs.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.