Vivek Sharma, Uday Paulbudhe, Poonam Gupta, Akshat Shirish Zalte, Samir H. Chikkali* and Guruswamy Kumaraswamy*,
{"title":"聚乙烯接枝片状硅氧烷的热性能","authors":"Vivek Sharma, Uday Paulbudhe, Poonam Gupta, Akshat Shirish Zalte, Samir H. Chikkali* and Guruswamy Kumaraswamy*, ","doi":"10.1021/acsapm.4c0418110.1021/acsapm.4c04181","DOIUrl":null,"url":null,"abstract":"<p >Polyethylene-grafted layered silsesquioxanes, termed polyethylene-clays (PEC), are nanocomposites comprising polyethylene chains tethered to inorganic sheets with a phyllosilicate-like structure. Here, we report that these nanocomposites show two-stage crystallization on cooling, qualitatively different from previous reports on polyethylene nanocomposites. We employ differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) to study the melting and crystallization of PEC. End tethering of the polyethylene chains to a nanosheet strongly influences the manner in which PEC crystallizes from the melt on cooling. PEC exhibits two-step crystallization, characterized by a sharp high-temperature exotherm, followed by a broader exotherm at lower temperatures, in contrast to a single sharp exotherm for neat polyethylene. SAXS indicates that lamellar stacks form at high temperatures and that the low-temperature exotherm corresponds to the formation of additional lamellae and their insertion within these stacks. PEC exhibits lower peak melting temperature, lower crystallinity, and a wider melting range relative to polyethylene. We show that the progress of crystallization of PEC is determined by its ultraslow relaxation dynamics. In contrast, PEC in xylene solution exhibits a significantly shorter relaxation time than the melt PEC. Such systems exhibited a single exotherm on cooling and SAXS structure factor peaks with peak positions in a ratio of 1:2. We hypothesize that the high melt viscosity inhibits the crystallization-induced decrease in the specific volume of PEC, resulting in tensile internal stresses that determine the observed thermal behavior.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 7","pages":"4290–4300 4290–4300"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Properties of Polyethylene-Grafted Sheetlike Silsesquioxanes\",\"authors\":\"Vivek Sharma, Uday Paulbudhe, Poonam Gupta, Akshat Shirish Zalte, Samir H. Chikkali* and Guruswamy Kumaraswamy*, \",\"doi\":\"10.1021/acsapm.4c0418110.1021/acsapm.4c04181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyethylene-grafted layered silsesquioxanes, termed polyethylene-clays (PEC), are nanocomposites comprising polyethylene chains tethered to inorganic sheets with a phyllosilicate-like structure. Here, we report that these nanocomposites show two-stage crystallization on cooling, qualitatively different from previous reports on polyethylene nanocomposites. We employ differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) to study the melting and crystallization of PEC. End tethering of the polyethylene chains to a nanosheet strongly influences the manner in which PEC crystallizes from the melt on cooling. PEC exhibits two-step crystallization, characterized by a sharp high-temperature exotherm, followed by a broader exotherm at lower temperatures, in contrast to a single sharp exotherm for neat polyethylene. SAXS indicates that lamellar stacks form at high temperatures and that the low-temperature exotherm corresponds to the formation of additional lamellae and their insertion within these stacks. PEC exhibits lower peak melting temperature, lower crystallinity, and a wider melting range relative to polyethylene. We show that the progress of crystallization of PEC is determined by its ultraslow relaxation dynamics. In contrast, PEC in xylene solution exhibits a significantly shorter relaxation time than the melt PEC. Such systems exhibited a single exotherm on cooling and SAXS structure factor peaks with peak positions in a ratio of 1:2. We hypothesize that the high melt viscosity inhibits the crystallization-induced decrease in the specific volume of PEC, resulting in tensile internal stresses that determine the observed thermal behavior.</p>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"7 7\",\"pages\":\"4290–4300 4290–4300\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsapm.4c04181\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c04181","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal Properties of Polyethylene-Grafted Sheetlike Silsesquioxanes
Polyethylene-grafted layered silsesquioxanes, termed polyethylene-clays (PEC), are nanocomposites comprising polyethylene chains tethered to inorganic sheets with a phyllosilicate-like structure. Here, we report that these nanocomposites show two-stage crystallization on cooling, qualitatively different from previous reports on polyethylene nanocomposites. We employ differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) to study the melting and crystallization of PEC. End tethering of the polyethylene chains to a nanosheet strongly influences the manner in which PEC crystallizes from the melt on cooling. PEC exhibits two-step crystallization, characterized by a sharp high-temperature exotherm, followed by a broader exotherm at lower temperatures, in contrast to a single sharp exotherm for neat polyethylene. SAXS indicates that lamellar stacks form at high temperatures and that the low-temperature exotherm corresponds to the formation of additional lamellae and their insertion within these stacks. PEC exhibits lower peak melting temperature, lower crystallinity, and a wider melting range relative to polyethylene. We show that the progress of crystallization of PEC is determined by its ultraslow relaxation dynamics. In contrast, PEC in xylene solution exhibits a significantly shorter relaxation time than the melt PEC. Such systems exhibited a single exotherm on cooling and SAXS structure factor peaks with peak positions in a ratio of 1:2. We hypothesize that the high melt viscosity inhibits the crystallization-induced decrease in the specific volume of PEC, resulting in tensile internal stresses that determine the observed thermal behavior.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.