基于高价元氧化物表面工程的废LiNi0.55Co0.15Mn0.3O2电池正极升级利用

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wenyu Wang, Renming Zhan, Yuanjian Li, Zihe Chen, Ruikang Feng, Yuchen Tan, Xiangrui Duan, Jiao Wang, Yida Lu and Yongming Sun*, 
{"title":"基于高价元氧化物表面工程的废LiNi0.55Co0.15Mn0.3O2电池正极升级利用","authors":"Wenyu Wang,&nbsp;Renming Zhan,&nbsp;Yuanjian Li,&nbsp;Zihe Chen,&nbsp;Ruikang Feng,&nbsp;Yuchen Tan,&nbsp;Xiangrui Duan,&nbsp;Jiao Wang,&nbsp;Yida Lu and Yongming Sun*,&nbsp;","doi":"10.1021/acsenergylett.5c0009510.1021/acsenergylett.5c00095","DOIUrl":null,"url":null,"abstract":"<p >The advancement of efficient cathode upcycling solutions of degraded batteries is paramount in light of environmental and resource considerations. Here, we introduce a one-step solid-state annealing approach employing nanosized MoO<sub>3</sub> as a surface treatment reagent and LiOH as a lithium compensation reagent to rejuvenate degraded single-crystal LiNi<sub>0.55</sub>Co<sub>0.15</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathodes from 110 Ah electric vehicle batteries. High-valence Mo species enrich along grain boundaries on the material surface, engendering a 5 nm thick amorphous Li–Mo–O interface layer that envelops the revitalized cathode particles with the recovered bulk structure, significantly bolstering ionic conductivity and resistance to undesired side reactions. As a result, the regenerated LiNi<sub>0.55</sub>Co<sub>0.15</sub>Mn<sub>0.30</sub>O<sub>2</sub> achieves a reversible capacity of 184.2 mAh g<sup>–1</sup> at 0.1 <i>C</i> and retains 81% of its capacity after 450 cycles at 0.5 <i>C</i>, which outperforms current commercial material. A 120 mAh pouch cell with such a cathode maintains an impressive capacity retention rate of 80.6% even after 700 cycles at 1 <i>C</i>/0.2 <i>C</i> (charge/discharge).</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 4","pages":"1577–1584 1577–1584"},"PeriodicalIF":18.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upcycling Spent LiNi0.55Co0.15Mn0.3O2 Battery Cathode via High-Valence-Element Oxide Surface Engineering\",\"authors\":\"Wenyu Wang,&nbsp;Renming Zhan,&nbsp;Yuanjian Li,&nbsp;Zihe Chen,&nbsp;Ruikang Feng,&nbsp;Yuchen Tan,&nbsp;Xiangrui Duan,&nbsp;Jiao Wang,&nbsp;Yida Lu and Yongming Sun*,&nbsp;\",\"doi\":\"10.1021/acsenergylett.5c0009510.1021/acsenergylett.5c00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The advancement of efficient cathode upcycling solutions of degraded batteries is paramount in light of environmental and resource considerations. Here, we introduce a one-step solid-state annealing approach employing nanosized MoO<sub>3</sub> as a surface treatment reagent and LiOH as a lithium compensation reagent to rejuvenate degraded single-crystal LiNi<sub>0.55</sub>Co<sub>0.15</sub>Mn<sub>0.3</sub>O<sub>2</sub> cathodes from 110 Ah electric vehicle batteries. High-valence Mo species enrich along grain boundaries on the material surface, engendering a 5 nm thick amorphous Li–Mo–O interface layer that envelops the revitalized cathode particles with the recovered bulk structure, significantly bolstering ionic conductivity and resistance to undesired side reactions. As a result, the regenerated LiNi<sub>0.55</sub>Co<sub>0.15</sub>Mn<sub>0.30</sub>O<sub>2</sub> achieves a reversible capacity of 184.2 mAh g<sup>–1</sup> at 0.1 <i>C</i> and retains 81% of its capacity after 450 cycles at 0.5 <i>C</i>, which outperforms current commercial material. A 120 mAh pouch cell with such a cathode maintains an impressive capacity retention rate of 80.6% even after 700 cycles at 1 <i>C</i>/0.2 <i>C</i> (charge/discharge).</p>\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"10 4\",\"pages\":\"1577–1584 1577–1584\"},\"PeriodicalIF\":18.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00095\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.5c00095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

从环境和资源的角度考虑,高效的电池阴极升级回收方案的发展是至关重要的。本文采用纳米级MoO3作为表面处理试剂,LiOH作为锂补偿试剂,对110 Ah电动汽车电池中退化的单晶LiNi0.55Co0.15Mn0.3O2阴极进行了一步固态退火处理。高价态Mo物质沿着材料表面晶界富集,形成5 nm厚的无定形Li-Mo-O界面层,以恢复的体结构包裹活化的阴极颗粒,显著提高离子电导率和抗不良副反应的能力。结果表明,再生的LiNi0.55Co0.15Mn0.30O2在0.1 C下的可逆容量为184.2 mAh g-1,在0.5 C下循环450次后仍能保持81%的容量,优于目前的商用材料。使用这种阴极的120毫安时的袋状电池即使在1 C/0.2 C(充电/放电)下循环700次后,也能保持令人印象深刻的80.6%的容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Upcycling Spent LiNi0.55Co0.15Mn0.3O2 Battery Cathode via High-Valence-Element Oxide Surface Engineering

Upcycling Spent LiNi0.55Co0.15Mn0.3O2 Battery Cathode via High-Valence-Element Oxide Surface Engineering

The advancement of efficient cathode upcycling solutions of degraded batteries is paramount in light of environmental and resource considerations. Here, we introduce a one-step solid-state annealing approach employing nanosized MoO3 as a surface treatment reagent and LiOH as a lithium compensation reagent to rejuvenate degraded single-crystal LiNi0.55Co0.15Mn0.3O2 cathodes from 110 Ah electric vehicle batteries. High-valence Mo species enrich along grain boundaries on the material surface, engendering a 5 nm thick amorphous Li–Mo–O interface layer that envelops the revitalized cathode particles with the recovered bulk structure, significantly bolstering ionic conductivity and resistance to undesired side reactions. As a result, the regenerated LiNi0.55Co0.15Mn0.30O2 achieves a reversible capacity of 184.2 mAh g–1 at 0.1 C and retains 81% of its capacity after 450 cycles at 0.5 C, which outperforms current commercial material. A 120 mAh pouch cell with such a cathode maintains an impressive capacity retention rate of 80.6% even after 700 cycles at 1 C/0.2 C (charge/discharge).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信