IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhiyi Fan, Yuan Wang, Yanlei Zhai, Xiaojiao Gu, Kairong Sun, Dan Zhao, Jinying Wang, Pinqi Sun, Hantang Huang, Jiajun He, Yining Wang, Moshe A. Flaishman, Huiqin Ma
{"title":"ERF100 regulated by ERF28 and NOR controls pectate lyase 7, modulating fig (Ficus carica L.) fruit softening","authors":"Zhiyi Fan, Yuan Wang, Yanlei Zhai, Xiaojiao Gu, Kairong Sun, Dan Zhao, Jinying Wang, Pinqi Sun, Hantang Huang, Jiajun He, Yining Wang, Moshe A. Flaishman, Huiqin Ma","doi":"10.1111/pbi.70085","DOIUrl":null,"url":null,"abstract":"The mechanism regulating fruit textural changes has not been fully elucidated. Transcription factor FcERF100 showed rapid transcription repression during drastic texture loss in fig (<i>Ficus carica</i> L.) fruit ripening. Transient overexpression of <i>FcERF100</i> delayed fig fruit softening and significantly decreased the transcript abundance of a key cell wall-modifying pectate lyase gene, <i>FcPL7</i>. Yeast one-hybrid (Y1H) assay, chromatin immunoprecipitation-qPCR, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay revealed that FcERF100 represses <i>FcPL7</i> transcription by direct promoter binding via GCC-box and DRE/CRT elements. Stable transgenic fig lines further verified FcERF100's inhibitory effect on <i>FcPL7</i> expression. We detected FcERF28 as an upstream element of <i>FcERF100</i> by Y1H and EMSA, revealing its binding to, and activation of <i>FcERF100</i> by dual-luciferase assay. Taken together, the FcERF28–FcERF100 transcriptional cascade serves as a synergistic flow-limiting valve for FcPL7 abundance. We then identified a NAC transcription factor, FcNOR, using FcERF100 as the bait by yeast two-hybrid screening. <i>FcNOR</i> silencing retarded fig fruit softening, with decreased <i>FcPL7</i> transcript and pectate lyase activity. FcNOR interacted with FcERF100 to form a protein complex, attenuating FcERF100's transcriptional repression of <i>FcPL7</i>. Moreover, FcNOR bound directly to the promoter of <i>FcERF100</i> and inhibited its transcription. In addition, ethylene treatment upregulated <i>FcNOR</i> and <i>FcPL7</i> expression and downregulated <i>FcERF28</i> and <i>FcERF100</i> expression. Our findings reveal a novel FcERF100-centered regulatory complex and resolve how the complex achieves the necessary cell wall modification during an early stage of fruit growth and implements drastic softening at fruit ripening by modulating component proportions.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70085","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

调节果实纹理变化的机制尚未完全阐明。在无花果(Ficus carica L.)果实成熟过程中,转录因子 FcERF100 在质地急剧下降过程中表现出快速转录抑制。FcERF100的瞬时过表达延迟了无花果果实的软化,并显著降低了一个关键的细胞壁修饰酚酸裂解酶基因FcPL7的转录丰度。酵母单杂交(Y1H)分析、染色质免疫共沉淀-qPCR、电泳迁移分析(EMSA)和双荧光素酶报告分析表明,FcERF100通过GCC-box和DRE/CRT元件与启动子直接结合,抑制了FcPL7的转录。稳定的转基因无花果系进一步验证了FcERF100对FcPL7表达的抑制作用。我们通过Y1H和EMSA检测到FcERF28是FcERF100的上游元件,并通过双荧光素酶检测揭示了它与FcERF100的结合和激活。综上所述,FcERF28-FcERF100 转录级联是 FcPL7 丰度的协同限流阀。随后,我们以 FcERF100 为诱饵,通过酵母双杂交筛选鉴定出一种 NAC 转录因子 FcNOR。FcNOR沉默可延缓无花果果实软化,同时降低FcPL7转录本和果胶酶活性。FcNOR与FcERF100相互作用形成蛋白复合物,削弱了FcERF100对FcPL7的转录抑制作用。此外,FcNOR直接与FcERF100的启动子结合并抑制其转录。此外,乙烯处理可上调 FcNOR 和 FcPL7 的表达,下调 FcERF28 和 FcERF100 的表达。我们的研究结果揭示了一个以 FcERF100 为中心的新型调控复合体,并解析了该复合体如何在果实生长的早期阶段实现必要的细胞壁修饰,并在果实成熟时通过调节成分比例实现急剧软化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ERF100 regulated by ERF28 and NOR controls pectate lyase 7, modulating fig (Ficus carica L.) fruit softening
The mechanism regulating fruit textural changes has not been fully elucidated. Transcription factor FcERF100 showed rapid transcription repression during drastic texture loss in fig (Ficus carica L.) fruit ripening. Transient overexpression of FcERF100 delayed fig fruit softening and significantly decreased the transcript abundance of a key cell wall-modifying pectate lyase gene, FcPL7. Yeast one-hybrid (Y1H) assay, chromatin immunoprecipitation-qPCR, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay revealed that FcERF100 represses FcPL7 transcription by direct promoter binding via GCC-box and DRE/CRT elements. Stable transgenic fig lines further verified FcERF100's inhibitory effect on FcPL7 expression. We detected FcERF28 as an upstream element of FcERF100 by Y1H and EMSA, revealing its binding to, and activation of FcERF100 by dual-luciferase assay. Taken together, the FcERF28–FcERF100 transcriptional cascade serves as a synergistic flow-limiting valve for FcPL7 abundance. We then identified a NAC transcription factor, FcNOR, using FcERF100 as the bait by yeast two-hybrid screening. FcNOR silencing retarded fig fruit softening, with decreased FcPL7 transcript and pectate lyase activity. FcNOR interacted with FcERF100 to form a protein complex, attenuating FcERF100's transcriptional repression of FcPL7. Moreover, FcNOR bound directly to the promoter of FcERF100 and inhibited its transcription. In addition, ethylene treatment upregulated FcNOR and FcPL7 expression and downregulated FcERF28 and FcERF100 expression. Our findings reveal a novel FcERF100-centered regulatory complex and resolve how the complex achieves the necessary cell wall modification during an early stage of fruit growth and implements drastic softening at fruit ripening by modulating component proportions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信