Joshua Sraku Adu, Alice Sheppard, Raphael E. Agbenyeke, George Kwesi Asare, Behrang H. Hamadani, David J. Fermin, Helen Hejin Park
{"title":"钙钛矿太阳能电池中超薄(Al,Sn)Ox电子萃取层表面电子景观的调整","authors":"Joshua Sraku Adu, Alice Sheppard, Raphael E. Agbenyeke, George Kwesi Asare, Behrang H. Hamadani, David J. Fermin, Helen Hejin Park","doi":"10.1002/smll.202412702","DOIUrl":null,"url":null,"abstract":"<p>Power conversion losses at the electron transport layer (ETL) are key limiting factors in high-performance perovskite solar cells (PSC) and silicon-PSC tandem systems. Solution-processed nanoparticle tin dioxide (<i>np</i>-SnO<sub>2</sub>) films typically serve as ETLs in <i>n</i>-<i>i</i>-<i>p</i> devices with ITO substrates. Surface-active molecules boost electron extraction, but assessing surface electronic properties remains challenging. In this study, the surface electronic landscape of the ITO and <i>np</i>-SnO<sub>2</sub> layers is interrogated and the impact of introducing an ultrathin aluminum tin oxide ((Al,Sn)O<i><sub>x</sub></i>) interlayer with various cation ratios in high power conversion efficiency (PCE) cells is examined. Energy-filtered photoemission electron microscopy (EF-PEEM) reveals evidence of chemical disorder in <i>np</i>-SnO<sub>2</sub>, with a broad local work function distribution across the surface, in stark contrast with the (Al,Sn)O<i><sub>x</sub></i> films deposited on ITO. Optimum 31% Al (Al,Sn)O<i><sub>x</sub></i> films increase the mean work function by ≈100 meV, promoting a remarkable increase in PCE from 22.7% to 24.6%. Devices incorporating (Al,Sn)O<i><sub>x</sub></i> maintain 90% of their initial performance after 1200 h at 85 °C, 85% humidity under 1 SUN illumination. This study highlights the importance of tailoring ETL interfaces to improve both efficiency and long-term stability in PSC devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 22","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Surface Electronic Landscape of Ultrathin (Al,Sn)Ox Electron Extraction Layers in Perovskite Solar Cells\",\"authors\":\"Joshua Sraku Adu, Alice Sheppard, Raphael E. Agbenyeke, George Kwesi Asare, Behrang H. Hamadani, David J. Fermin, Helen Hejin Park\",\"doi\":\"10.1002/smll.202412702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power conversion losses at the electron transport layer (ETL) are key limiting factors in high-performance perovskite solar cells (PSC) and silicon-PSC tandem systems. Solution-processed nanoparticle tin dioxide (<i>np</i>-SnO<sub>2</sub>) films typically serve as ETLs in <i>n</i>-<i>i</i>-<i>p</i> devices with ITO substrates. Surface-active molecules boost electron extraction, but assessing surface electronic properties remains challenging. In this study, the surface electronic landscape of the ITO and <i>np</i>-SnO<sub>2</sub> layers is interrogated and the impact of introducing an ultrathin aluminum tin oxide ((Al,Sn)O<i><sub>x</sub></i>) interlayer with various cation ratios in high power conversion efficiency (PCE) cells is examined. Energy-filtered photoemission electron microscopy (EF-PEEM) reveals evidence of chemical disorder in <i>np</i>-SnO<sub>2</sub>, with a broad local work function distribution across the surface, in stark contrast with the (Al,Sn)O<i><sub>x</sub></i> films deposited on ITO. Optimum 31% Al (Al,Sn)O<i><sub>x</sub></i> films increase the mean work function by ≈100 meV, promoting a remarkable increase in PCE from 22.7% to 24.6%. Devices incorporating (Al,Sn)O<i><sub>x</sub></i> maintain 90% of their initial performance after 1200 h at 85 °C, 85% humidity under 1 SUN illumination. This study highlights the importance of tailoring ETL interfaces to improve both efficiency and long-term stability in PSC devices.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 22\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412702\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412702","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
电子传输层(ETL)的功率转换损耗是高性能钙钛矿太阳能电池(PSC)和硅-PSC串联系统的关键限制因素。溶液处理的纳米颗粒二氧化锡(np-SnO2)薄膜通常用作ITO衬底的n-i-p器件的etl。表面活性分子促进了电子提取,但评估表面电子特性仍然具有挑战性。在本研究中,研究了ITO和np-SnO2层的表面电子景观,并研究了在高功率转换效率(PCE)电池中引入不同阳离子比的超薄铝锡氧化物((Al,Sn)Ox)中间层的影响。能量过滤光电子显微镜(EF-PEEM)揭示了np-SnO2中化学无序的证据,其表面具有广泛的局部功函数分布,与沉积在ITO上的(Al,Sn)Ox薄膜形成鲜明对比。最优的31% Al (Al,Sn)Ox薄膜使平均功函数提高约100 meV,使PCE从22.7%显著提高到24.6%。含有(Al,Sn)Ox的器件在85°C, 85%湿度,1个太阳光照下1200小时后保持90%的初始性能。本研究强调了定制ETL接口对提高PSC器件的效率和长期稳定性的重要性。
Tuning the Surface Electronic Landscape of Ultrathin (Al,Sn)Ox Electron Extraction Layers in Perovskite Solar Cells
Power conversion losses at the electron transport layer (ETL) are key limiting factors in high-performance perovskite solar cells (PSC) and silicon-PSC tandem systems. Solution-processed nanoparticle tin dioxide (np-SnO2) films typically serve as ETLs in n-i-p devices with ITO substrates. Surface-active molecules boost electron extraction, but assessing surface electronic properties remains challenging. In this study, the surface electronic landscape of the ITO and np-SnO2 layers is interrogated and the impact of introducing an ultrathin aluminum tin oxide ((Al,Sn)Ox) interlayer with various cation ratios in high power conversion efficiency (PCE) cells is examined. Energy-filtered photoemission electron microscopy (EF-PEEM) reveals evidence of chemical disorder in np-SnO2, with a broad local work function distribution across the surface, in stark contrast with the (Al,Sn)Ox films deposited on ITO. Optimum 31% Al (Al,Sn)Ox films increase the mean work function by ≈100 meV, promoting a remarkable increase in PCE from 22.7% to 24.6%. Devices incorporating (Al,Sn)Ox maintain 90% of their initial performance after 1200 h at 85 °C, 85% humidity under 1 SUN illumination. This study highlights the importance of tailoring ETL interfaces to improve both efficiency and long-term stability in PSC devices.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.