集成纳米级平台中激子扩散增强的能量捕获

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-10 DOI:10.1021/acsnano.4c18713
Adrien Rousseau, Katherine H. Richardson, Atanu Nandy, Cvetelin Vasilev, Madeline P. Hoffmann, C. Neil Hunter, Matthew P. Johnson, Gabriela S. Schlau-Cohen
{"title":"集成纳米级平台中激子扩散增强的能量捕获","authors":"Adrien Rousseau, Katherine H. Richardson, Atanu Nandy, Cvetelin Vasilev, Madeline P. Hoffmann, C. Neil Hunter, Matthew P. Johnson, Gabriela S. Schlau-Cohen","doi":"10.1021/acsnano.4c18713","DOIUrl":null,"url":null,"abstract":"Harnessing solar energy through biologically inspired nanoscale platforms presents a promising route for sustainable energy conversion. Biohybrid systems take advantage of the design and performance of natural systems while also enabling the optimized organization of the protein components. Until now, such systems have usually been made from components of the same species, limiting the range of properties and interactions that can be generated. Here, we introduce a nanoscale platform of biomolecular films containing cross-species antenna/reaction center proteins. We demonstrated a long-range exciton diffusion of ∼200 nm through the antenna light-harvesting complex II (LHCII) from green plants and quantified the underlying diffusivity at 3 × 10<sup>–2</sup> μm<sup>2</sup> ns<sup>–1</sup> using complementary simulations. The LHCII micropattern also induced directional exciton diffusion as a crucial mechanism for enhanced energy capture, yielding a ∼30% energy transfer efficiency to the reaction center-light-harvesting complex 1 complex from purple bacteria. This platform provides a proof-of-concept for an operation-ready, hybrid energy harvesting system capable of spanning the entire visible spectrum. The integration of diverse photosynthetic proteins into biofilm platforms offers new potential for solar energy capture and conversion.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"39 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exciton-Diffusion Enhanced Energy Capture in an Integrated Nanoscale Platform\",\"authors\":\"Adrien Rousseau, Katherine H. Richardson, Atanu Nandy, Cvetelin Vasilev, Madeline P. Hoffmann, C. Neil Hunter, Matthew P. Johnson, Gabriela S. Schlau-Cohen\",\"doi\":\"10.1021/acsnano.4c18713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harnessing solar energy through biologically inspired nanoscale platforms presents a promising route for sustainable energy conversion. Biohybrid systems take advantage of the design and performance of natural systems while also enabling the optimized organization of the protein components. Until now, such systems have usually been made from components of the same species, limiting the range of properties and interactions that can be generated. Here, we introduce a nanoscale platform of biomolecular films containing cross-species antenna/reaction center proteins. We demonstrated a long-range exciton diffusion of ∼200 nm through the antenna light-harvesting complex II (LHCII) from green plants and quantified the underlying diffusivity at 3 × 10<sup>–2</sup> μm<sup>2</sup> ns<sup>–1</sup> using complementary simulations. The LHCII micropattern also induced directional exciton diffusion as a crucial mechanism for enhanced energy capture, yielding a ∼30% energy transfer efficiency to the reaction center-light-harvesting complex 1 complex from purple bacteria. This platform provides a proof-of-concept for an operation-ready, hybrid energy harvesting system capable of spanning the entire visible spectrum. The integration of diverse photosynthetic proteins into biofilm platforms offers new potential for solar energy capture and conversion.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18713\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18713","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过生物启发的纳米级平台利用太阳能为可持续能源转换提供了一条有前途的途径。生物杂交系统利用了自然系统的设计和性能,同时也优化了蛋白质成分的组织。到目前为止,这样的系统通常是由同一物种的组成部分组成的,这限制了可以产生的特性和相互作用的范围。在这里,我们介绍了一个包含跨物种天线/反应中心蛋白的生物分子膜的纳米级平台。我们展示了来自绿色植物的天线光收集复合物II (LHCII)的远程激子扩散约200 nm,并使用互补模拟量化了3 × 10-2 μm2 ns-1的潜在扩散率。LHCII微图案还诱导定向激子扩散,作为增强能量捕获的关键机制,为紫色细菌的反应中心-光收集复合物1提供了约30%的能量传递效率。该平台为可操作的混合能量收集系统提供了概念验证,该系统能够跨越整个可见光谱。将多种光合作用蛋白整合到生物膜平台中,为太阳能捕获和转化提供了新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exciton-Diffusion Enhanced Energy Capture in an Integrated Nanoscale Platform

Exciton-Diffusion Enhanced Energy Capture in an Integrated Nanoscale Platform
Harnessing solar energy through biologically inspired nanoscale platforms presents a promising route for sustainable energy conversion. Biohybrid systems take advantage of the design and performance of natural systems while also enabling the optimized organization of the protein components. Until now, such systems have usually been made from components of the same species, limiting the range of properties and interactions that can be generated. Here, we introduce a nanoscale platform of biomolecular films containing cross-species antenna/reaction center proteins. We demonstrated a long-range exciton diffusion of ∼200 nm through the antenna light-harvesting complex II (LHCII) from green plants and quantified the underlying diffusivity at 3 × 10–2 μm2 ns–1 using complementary simulations. The LHCII micropattern also induced directional exciton diffusion as a crucial mechanism for enhanced energy capture, yielding a ∼30% energy transfer efficiency to the reaction center-light-harvesting complex 1 complex from purple bacteria. This platform provides a proof-of-concept for an operation-ready, hybrid energy harvesting system capable of spanning the entire visible spectrum. The integration of diverse photosynthetic proteins into biofilm platforms offers new potential for solar energy capture and conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信