钯纳米团簇配位工程用于硝酸盐到氨的高效电催化转化

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Chen Yang , Yunjiao Jia , Hang Xiao, Ben Chong, Honghui Ou, Bin Zhang, Guidong Yang
{"title":"钯纳米团簇配位工程用于硝酸盐到氨的高效电催化转化","authors":"Chen Yang ,&nbsp;Yunjiao Jia ,&nbsp;Hang Xiao,&nbsp;Ben Chong,&nbsp;Honghui Ou,&nbsp;Bin Zhang,&nbsp;Guidong Yang","doi":"10.1016/j.ces.2025.121662","DOIUrl":null,"url":null,"abstract":"<div><div>How to achieve high energy efficiency ammonia (NH<sub>3</sub>) synthesis is an important subject in energy industry. The traditional Haber-Bosch process demands high energy consumption and high CO<sub>2</sub> emissions, so electrochemical reduction of nitrate selectivity for NH<sub>3</sub> under ambient conditions offers a promising solution. In this study, the average size of palladium nanoclusters was ∼ 0.5 nm, and in order to obtain high NH<sub>3</sub> activity and selectivity simultaneously, palladium nanoclusters with different ligands were designed. The experiments demonstrated that the Pd-P coordination endows the supported Pd nanoclusters highest ammonia Faraday efficiency of 92.8 % and ammonia yield 1329.4 mmol h<sup>−1</sup> g<sub>cat</sub><sup>-1</sup>. To decipher the ligand coordination effect on the catalytic performance, advanced techniques and theoretical analyses were applied for clarifying the reaction pathways and illustrating the role of electronegative P in facilitating NH<sub>3</sub> production.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"312 ","pages":"Article 121662"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination Engineering of Pd nanoclusters for highly efficient electrocatalytic conversion of nitrate to ammonia\",\"authors\":\"Chen Yang ,&nbsp;Yunjiao Jia ,&nbsp;Hang Xiao,&nbsp;Ben Chong,&nbsp;Honghui Ou,&nbsp;Bin Zhang,&nbsp;Guidong Yang\",\"doi\":\"10.1016/j.ces.2025.121662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>How to achieve high energy efficiency ammonia (NH<sub>3</sub>) synthesis is an important subject in energy industry. The traditional Haber-Bosch process demands high energy consumption and high CO<sub>2</sub> emissions, so electrochemical reduction of nitrate selectivity for NH<sub>3</sub> under ambient conditions offers a promising solution. In this study, the average size of palladium nanoclusters was ∼ 0.5 nm, and in order to obtain high NH<sub>3</sub> activity and selectivity simultaneously, palladium nanoclusters with different ligands were designed. The experiments demonstrated that the Pd-P coordination endows the supported Pd nanoclusters highest ammonia Faraday efficiency of 92.8 % and ammonia yield 1329.4 mmol h<sup>−1</sup> g<sub>cat</sub><sup>-1</sup>. To decipher the ligand coordination effect on the catalytic performance, advanced techniques and theoretical analyses were applied for clarifying the reaction pathways and illustrating the role of electronegative P in facilitating NH<sub>3</sub> production.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"312 \",\"pages\":\"Article 121662\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925004853\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925004853","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

如何实现高能效氨合成是能源工业的一个重要课题。传统的Haber-Bosch工艺要求高能耗和高二氧化碳排放,因此在环境条件下电化学降低硝酸盐对NH3的选择性提供了一个很有前途的解决方案。本研究中钯纳米团簇的平均尺寸为 ~ 0.5 nm,为了同时获得高的NH3活性和选择性,设计了不同配体的钯纳米团簇。实验表明,Pd- p配位使负载的Pd纳米团簇氨法拉第效率最高,达到92.8 %,氨收率为1329.4 mmol h−1 gcat-1。为了解释配位对催化性能的影响,采用先进的技术和理论分析来阐明反应途径,并说明电负性P在促进NH3生成中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coordination Engineering of Pd nanoclusters for highly efficient electrocatalytic conversion of nitrate to ammonia

Coordination Engineering of Pd nanoclusters for highly efficient electrocatalytic conversion of nitrate to ammonia

Coordination Engineering of Pd nanoclusters for highly efficient electrocatalytic conversion of nitrate to ammonia
How to achieve high energy efficiency ammonia (NH3) synthesis is an important subject in energy industry. The traditional Haber-Bosch process demands high energy consumption and high CO2 emissions, so electrochemical reduction of nitrate selectivity for NH3 under ambient conditions offers a promising solution. In this study, the average size of palladium nanoclusters was ∼ 0.5 nm, and in order to obtain high NH3 activity and selectivity simultaneously, palladium nanoclusters with different ligands were designed. The experiments demonstrated that the Pd-P coordination endows the supported Pd nanoclusters highest ammonia Faraday efficiency of 92.8 % and ammonia yield 1329.4 mmol h−1 gcat-1. To decipher the ligand coordination effect on the catalytic performance, advanced techniques and theoretical analyses were applied for clarifying the reaction pathways and illustrating the role of electronegative P in facilitating NH3 production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信