Chong Wang, Zeya Li, Yingchun Cheng, Xiao-Ji Weng, Yeqiang Bu, Kun Zhai, Tianyu Xue, Hongtao Yuan, Anmin Nie, Xiang-Feng Zhou, Hongtao Wang, Yongjun Tian, Zhongyuan Liu
{"title":"陶瓷 GeSe 中的可逆洗牌孪晶产生各向异性的拉伸超弹性","authors":"Chong Wang, Zeya Li, Yingchun Cheng, Xiao-Ji Weng, Yeqiang Bu, Kun Zhai, Tianyu Xue, Hongtao Yuan, Anmin Nie, Xiang-Feng Zhou, Hongtao Wang, Yongjun Tian, Zhongyuan Liu","doi":"10.1038/s41565-025-01902-7","DOIUrl":null,"url":null,"abstract":"<p>Superelasticity is a reversible, nonlinear strain response to stress stimuli beyond the linear elastic regime. It is commonly associated with a martensitic transformation in its host material, usually a metal or polymer. Except for the ceramic crystals ZrO<sub>2</sub> and BaTiO<sub>3</sub>, which show superelasticity under compressive stress, inorganic materials with covalent or ionic bonding usually do not exhibit superelastic behaviour because of large energy barriers for structural transitions. Here we show anisotropic tensile superelasticity in the ceramic crystal GeSe, which originates from reversible shuffle twinning. Through in situ transmission electron microscopy mechanical testing, we trace the evolution from a linear elastic behaviour to a nonlinear superelastic plateau in stress–strain curves and concurrently observe the generation of stripy-shaped twin domains along the <110> direction. Density functional theory calculations paired with molecular dynamics simulations reveal a release of elastic potential energy upon the shuffle twinning process from a <i>Z</i>-shaped to an anti-<i>Z</i>-shaped bond configuration, which is responsible for the observed tensile superelasticity. This mechanism makes the observed superelasticity highly directional. In line with the anisotropic Young’s modulus and Poisson’s ratio in GeSe, experiments confirm that superelastic response emerges only when we apply strain along or close to the zigzag direction. We expect to find similar anisotropic superelasticity in ceramic semiconductors with similar crystal structure such as SnSe, SnS or GeS.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"58 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible shuffle twinning yields anisotropic tensile superelasticity in ceramic GeSe\",\"authors\":\"Chong Wang, Zeya Li, Yingchun Cheng, Xiao-Ji Weng, Yeqiang Bu, Kun Zhai, Tianyu Xue, Hongtao Yuan, Anmin Nie, Xiang-Feng Zhou, Hongtao Wang, Yongjun Tian, Zhongyuan Liu\",\"doi\":\"10.1038/s41565-025-01902-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Superelasticity is a reversible, nonlinear strain response to stress stimuli beyond the linear elastic regime. It is commonly associated with a martensitic transformation in its host material, usually a metal or polymer. Except for the ceramic crystals ZrO<sub>2</sub> and BaTiO<sub>3</sub>, which show superelasticity under compressive stress, inorganic materials with covalent or ionic bonding usually do not exhibit superelastic behaviour because of large energy barriers for structural transitions. Here we show anisotropic tensile superelasticity in the ceramic crystal GeSe, which originates from reversible shuffle twinning. Through in situ transmission electron microscopy mechanical testing, we trace the evolution from a linear elastic behaviour to a nonlinear superelastic plateau in stress–strain curves and concurrently observe the generation of stripy-shaped twin domains along the <110> direction. Density functional theory calculations paired with molecular dynamics simulations reveal a release of elastic potential energy upon the shuffle twinning process from a <i>Z</i>-shaped to an anti-<i>Z</i>-shaped bond configuration, which is responsible for the observed tensile superelasticity. This mechanism makes the observed superelasticity highly directional. In line with the anisotropic Young’s modulus and Poisson’s ratio in GeSe, experiments confirm that superelastic response emerges only when we apply strain along or close to the zigzag direction. We expect to find similar anisotropic superelasticity in ceramic semiconductors with similar crystal structure such as SnSe, SnS or GeS.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01902-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01902-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Reversible shuffle twinning yields anisotropic tensile superelasticity in ceramic GeSe
Superelasticity is a reversible, nonlinear strain response to stress stimuli beyond the linear elastic regime. It is commonly associated with a martensitic transformation in its host material, usually a metal or polymer. Except for the ceramic crystals ZrO2 and BaTiO3, which show superelasticity under compressive stress, inorganic materials with covalent or ionic bonding usually do not exhibit superelastic behaviour because of large energy barriers for structural transitions. Here we show anisotropic tensile superelasticity in the ceramic crystal GeSe, which originates from reversible shuffle twinning. Through in situ transmission electron microscopy mechanical testing, we trace the evolution from a linear elastic behaviour to a nonlinear superelastic plateau in stress–strain curves and concurrently observe the generation of stripy-shaped twin domains along the <110> direction. Density functional theory calculations paired with molecular dynamics simulations reveal a release of elastic potential energy upon the shuffle twinning process from a Z-shaped to an anti-Z-shaped bond configuration, which is responsible for the observed tensile superelasticity. This mechanism makes the observed superelasticity highly directional. In line with the anisotropic Young’s modulus and Poisson’s ratio in GeSe, experiments confirm that superelastic response emerges only when we apply strain along or close to the zigzag direction. We expect to find similar anisotropic superelasticity in ceramic semiconductors with similar crystal structure such as SnSe, SnS or GeS.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.