具有高压缩性和高强度的玻璃状离子凝胶,用于冲击防护

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiayu Wang, Shilong Zhang, Lingling Li, Xiaoliang Wang, Jiaofeng Xiong, Qingning Li, Weizheng Li, Feng Yan
{"title":"具有高压缩性和高强度的玻璃状离子凝胶,用于冲击防护","authors":"Jiayu Wang, Shilong Zhang, Lingling Li, Xiaoliang Wang, Jiaofeng Xiong, Qingning Li, Weizheng Li, Feng Yan","doi":"10.1073/pnas.2417978122","DOIUrl":null,"url":null,"abstract":"Solvents within gels enhance the mobility of polymer chain segments while concurrently diminishing interchain interactions, thereby facilitating the ductility of glassy polymers at the cost of their mechanical strength. Here, we develop a solvent toughening strategy for the preparation of highly compressible and high-strength ionogels in the glassy state. This approach leverages the synergistic effects of the slow dissociation-shift kinetics of solvent ionic liquids and polymer crystallization. Ionogels exhibit an ultimate compressive stress of 2.3 GPa (at 98% compressive strain), toughness of 1219.3 MJ m <jats:sup>−3</jats:sup> , and energy dissipation rate of 81.9% (at 70% compression strain). The highly interacting ionic bonds of solvent and the fast crystallization of polymers under load toughen the ionogels and confer impact hardening and efficient energy dissipation behavior under fast impact. A 500-μm-thick ionogel coating can protect fragile items, such as glass, from impact damage. Ionogels, renowned for their impact resistance, hold promise for various applications across industries including human body implants, equipment, transportation, and aerospace.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"34 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glassy ionogels with high compressibility and strength for impact protection\",\"authors\":\"Jiayu Wang, Shilong Zhang, Lingling Li, Xiaoliang Wang, Jiaofeng Xiong, Qingning Li, Weizheng Li, Feng Yan\",\"doi\":\"10.1073/pnas.2417978122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solvents within gels enhance the mobility of polymer chain segments while concurrently diminishing interchain interactions, thereby facilitating the ductility of glassy polymers at the cost of their mechanical strength. Here, we develop a solvent toughening strategy for the preparation of highly compressible and high-strength ionogels in the glassy state. This approach leverages the synergistic effects of the slow dissociation-shift kinetics of solvent ionic liquids and polymer crystallization. Ionogels exhibit an ultimate compressive stress of 2.3 GPa (at 98% compressive strain), toughness of 1219.3 MJ m <jats:sup>−3</jats:sup> , and energy dissipation rate of 81.9% (at 70% compression strain). The highly interacting ionic bonds of solvent and the fast crystallization of polymers under load toughen the ionogels and confer impact hardening and efficient energy dissipation behavior under fast impact. A 500-μm-thick ionogel coating can protect fragile items, such as glass, from impact damage. Ionogels, renowned for their impact resistance, hold promise for various applications across industries including human body implants, equipment, transportation, and aerospace.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2417978122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417978122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

凝胶中的溶剂增强了聚合物链段的流动性,同时减少了链间的相互作用,从而以牺牲机械强度为代价促进了玻璃状聚合物的延展性。在这里,我们开发了一种溶剂增韧策略,用于制备玻璃态的高可压缩性和高强度离子凝胶。这种方法利用了溶剂离子液体和聚合物结晶的缓慢解离转移动力学的协同效应。离子凝胶的极限压应力为2.3 GPa(98%压缩应变),韧性为1219.3 MJ m−3,能量耗散率为81.9%(70%压缩应变)。溶剂的高度相互作用的离子键和聚合物在负载下的快速结晶使离子凝胶增韧,并赋予了快速冲击下的冲击硬化和有效的能量耗散行为。500 μm厚的离子凝胶涂层可以保护玻璃等易碎物品免受冲击损坏。离子凝胶以其抗冲击性而闻名,有望在人体植入物、设备、运输和航空航天等行业得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glassy ionogels with high compressibility and strength for impact protection
Solvents within gels enhance the mobility of polymer chain segments while concurrently diminishing interchain interactions, thereby facilitating the ductility of glassy polymers at the cost of their mechanical strength. Here, we develop a solvent toughening strategy for the preparation of highly compressible and high-strength ionogels in the glassy state. This approach leverages the synergistic effects of the slow dissociation-shift kinetics of solvent ionic liquids and polymer crystallization. Ionogels exhibit an ultimate compressive stress of 2.3 GPa (at 98% compressive strain), toughness of 1219.3 MJ m −3 , and energy dissipation rate of 81.9% (at 70% compression strain). The highly interacting ionic bonds of solvent and the fast crystallization of polymers under load toughen the ionogels and confer impact hardening and efficient energy dissipation behavior under fast impact. A 500-μm-thick ionogel coating can protect fragile items, such as glass, from impact damage. Ionogels, renowned for their impact resistance, hold promise for various applications across industries including human body implants, equipment, transportation, and aerospace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信