通用照明量子点led的原位掺n纳米晶体电子注入层

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yizhen Zheng, Xing Lin, Jiongzhao Li, Jianan Chen, Wenhao Wu, Zixuan Song, Yuan Gao, Zhuang Hu, Huifeng Wang, Zikang Ye, Haiyan Qin, Xiaogang Peng
{"title":"通用照明量子点led的原位掺n纳米晶体电子注入层","authors":"Yizhen Zheng, Xing Lin, Jiongzhao Li, Jianan Chen, Wenhao Wu, Zixuan Song, Yuan Gao, Zhuang Hu, Huifeng Wang, Zikang Ye, Haiyan Qin, Xiaogang Peng","doi":"10.1038/s41467-025-58471-5","DOIUrl":null,"url":null,"abstract":"<p>Quantum-dot optoelectronics, pivotal for lighting, lasing and photovoltaics, rely on nanocrystalline oxide electron-injection layer. Here, we discover that the prevalent surface magnesium-modified zinc oxide electron-injection layer possesses poor n-type attributes, leading to the suboptimal and encapsulation-resin-sensitive performance of quantum-dot light-emitting diodes. A heavily n-doped nanocrystalline electron-injection layer—exhibiting ohmic transport with 1000 times higher electron conductivity and improved hole blockage—is developed via a simple reductive treatment. The resulting sub-bandgap-driven quantum-dot light-emitting diodes exhibit optimal efficiency and extraordinarily-high brightness, surpassing current benchmarks by at least 2.6-fold, and reaching levels suitable for quantum-dot laser diodes with only modest bias. This breakthrough further empowers white-lighting quantum-dot light-emitting diodes to exceed the 2035 U.S. Department of Energy’s targets for general lighting, which currently accounts for ~15% of global electricity consumption. Our work opens a door for understanding and optimizing carrier transport in nanocrystalline semiconductors shared by various types of solution-processed optoelectronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"97 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ n-doped nanocrystalline electron-injection-layer for general-lighting quantum-dot LEDs\",\"authors\":\"Yizhen Zheng, Xing Lin, Jiongzhao Li, Jianan Chen, Wenhao Wu, Zixuan Song, Yuan Gao, Zhuang Hu, Huifeng Wang, Zikang Ye, Haiyan Qin, Xiaogang Peng\",\"doi\":\"10.1038/s41467-025-58471-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum-dot optoelectronics, pivotal for lighting, lasing and photovoltaics, rely on nanocrystalline oxide electron-injection layer. Here, we discover that the prevalent surface magnesium-modified zinc oxide electron-injection layer possesses poor n-type attributes, leading to the suboptimal and encapsulation-resin-sensitive performance of quantum-dot light-emitting diodes. A heavily n-doped nanocrystalline electron-injection layer—exhibiting ohmic transport with 1000 times higher electron conductivity and improved hole blockage—is developed via a simple reductive treatment. The resulting sub-bandgap-driven quantum-dot light-emitting diodes exhibit optimal efficiency and extraordinarily-high brightness, surpassing current benchmarks by at least 2.6-fold, and reaching levels suitable for quantum-dot laser diodes with only modest bias. This breakthrough further empowers white-lighting quantum-dot light-emitting diodes to exceed the 2035 U.S. Department of Energy’s targets for general lighting, which currently accounts for ~15% of global electricity consumption. Our work opens a door for understanding and optimizing carrier transport in nanocrystalline semiconductors shared by various types of solution-processed optoelectronic devices.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58471-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58471-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

量子点光电子学是照明、激光和光伏的关键,它依赖于纳米晶氧化物电子注入层。在这里,我们发现普遍的表面镁修饰氧化锌电子注入层具有较差的n型属性,导致量子点发光二极管的次优和封装树脂敏感性能。通过简单的还原处理,开发了一种重氮掺杂的纳米晶体电子注入层,具有高1000倍的电子导电性和改善的空穴堵塞。由此产生的子带隙驱动的量子点发光二极管表现出最佳的效率和非凡的高亮度,超过目前的基准至少2.6倍,并且达到适合量子点激光二极管的水平,只有适度的偏倚。这一突破进一步使白光量子点发光二极管超过2035年美国能源部一般照明的目标,目前占全球电力消耗的约15%。我们的工作为理解和优化各种类型的溶液处理光电器件共享的纳米晶体半导体中的载流子输运打开了一扇门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In situ n-doped nanocrystalline electron-injection-layer for general-lighting quantum-dot LEDs

In situ n-doped nanocrystalline electron-injection-layer for general-lighting quantum-dot LEDs

Quantum-dot optoelectronics, pivotal for lighting, lasing and photovoltaics, rely on nanocrystalline oxide electron-injection layer. Here, we discover that the prevalent surface magnesium-modified zinc oxide electron-injection layer possesses poor n-type attributes, leading to the suboptimal and encapsulation-resin-sensitive performance of quantum-dot light-emitting diodes. A heavily n-doped nanocrystalline electron-injection layer—exhibiting ohmic transport with 1000 times higher electron conductivity and improved hole blockage—is developed via a simple reductive treatment. The resulting sub-bandgap-driven quantum-dot light-emitting diodes exhibit optimal efficiency and extraordinarily-high brightness, surpassing current benchmarks by at least 2.6-fold, and reaching levels suitable for quantum-dot laser diodes with only modest bias. This breakthrough further empowers white-lighting quantum-dot light-emitting diodes to exceed the 2035 U.S. Department of Energy’s targets for general lighting, which currently accounts for ~15% of global electricity consumption. Our work opens a door for understanding and optimizing carrier transport in nanocrystalline semiconductors shared by various types of solution-processed optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信