支持高性能5 V LiNi0.5Mn1.5O4正极的电解质添加剂的数据驱动设计

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bingning Wang, Hieu A. Doan, Seoung-Bum Son, Daniel P. Abraham, Stephen E. Trask, Andrew Jansen, Kang Xu, Chen Liao
{"title":"支持高性能5 V LiNi0.5Mn1.5O4正极的电解质添加剂的数据驱动设计","authors":"Bingning Wang, Hieu A. Doan, Seoung-Bum Son, Daniel P. Abraham, Stephen E. Trask, Andrew Jansen, Kang Xu, Chen Liao","doi":"10.1038/s41467-025-57961-w","DOIUrl":null,"url":null,"abstract":"<p>LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is a high-capacity spinel-structured material with an average lithiation/de-lithiation potential at ca. 4.6–4.7 V vs Li<sup>+</sup>/Li, far exceeding the stability limits of electrolytes. An efficient way to enable LNMO in lithium-ion batteries is to reformulate an electrolyte composition that stabilizes both graphitic (Gr) negative electrode with solid-electrolyte-interphase and LNMO with cathode-electrolyte-interphase. In this study, we select and test a diverse collection of 28 single and dual additives for the Gr||LNMO battery system. Subsequently, we train machine learning models on this dataset and employ the trained models to suggest 6 binary compositions out of 125, based on predicted final area-specific-impedance, impedance rise, and final specific-capacity. Such machine learning-generated new additives outperform the initial dataset. This finding not only underscores the efficacy of machine learning in identifying materials in a highly complicated application space but also showcases an accelerated material discovery workflow that directly integrates data-driven methods with battery testing experiments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven design of electrolyte additives supporting high-performance 5 V LiNi0.5Mn1.5O4 positive electrodes\",\"authors\":\"Bingning Wang, Hieu A. Doan, Seoung-Bum Son, Daniel P. Abraham, Stephen E. Trask, Andrew Jansen, Kang Xu, Chen Liao\",\"doi\":\"10.1038/s41467-025-57961-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) is a high-capacity spinel-structured material with an average lithiation/de-lithiation potential at ca. 4.6–4.7 V vs Li<sup>+</sup>/Li, far exceeding the stability limits of electrolytes. An efficient way to enable LNMO in lithium-ion batteries is to reformulate an electrolyte composition that stabilizes both graphitic (Gr) negative electrode with solid-electrolyte-interphase and LNMO with cathode-electrolyte-interphase. In this study, we select and test a diverse collection of 28 single and dual additives for the Gr||LNMO battery system. Subsequently, we train machine learning models on this dataset and employ the trained models to suggest 6 binary compositions out of 125, based on predicted final area-specific-impedance, impedance rise, and final specific-capacity. Such machine learning-generated new additives outperform the initial dataset. This finding not only underscores the efficacy of machine learning in identifying materials in a highly complicated application space but also showcases an accelerated material discovery workflow that directly integrates data-driven methods with battery testing experiments.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"3 2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57961-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57961-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

LiNi0.5Mn1.5O4 (LNMO)是一种高容量尖晶石结构材料,其平均锂化/去锂化电位约为4.6-4.7 V vs Li+/Li,远远超过电解质的稳定性极限。在锂离子电池中实现LNMO的一种有效方法是重新配制一种电解质成分,既可以稳定具有固体电解质间相的石墨(Gr)负极,也可以稳定具有阴极电解质间相的LNMO。在这项研究中,我们选择并测试了28种不同的单一和双重添加剂,用于Gr||LNMO电池系统。随后,我们在该数据集上训练机器学习模型,并使用训练好的模型根据预测的最终面积比阻抗、阻抗上升和最终比容,从125个二进制组合中提出6个二元组合。这种机器学习生成的新添加剂的性能优于初始数据集。这一发现不仅强调了机器学习在高度复杂的应用领域中识别材料的有效性,而且还展示了一种加速的材料发现工作流程,该工作流程直接将数据驱动方法与电池测试实验相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Data-driven design of electrolyte additives supporting high-performance 5 V LiNi0.5Mn1.5O4 positive electrodes

Data-driven design of electrolyte additives supporting high-performance 5 V LiNi0.5Mn1.5O4 positive electrodes

LiNi0.5Mn1.5O4 (LNMO) is a high-capacity spinel-structured material with an average lithiation/de-lithiation potential at ca. 4.6–4.7 V vs Li+/Li, far exceeding the stability limits of electrolytes. An efficient way to enable LNMO in lithium-ion batteries is to reformulate an electrolyte composition that stabilizes both graphitic (Gr) negative electrode with solid-electrolyte-interphase and LNMO with cathode-electrolyte-interphase. In this study, we select and test a diverse collection of 28 single and dual additives for the Gr||LNMO battery system. Subsequently, we train machine learning models on this dataset and employ the trained models to suggest 6 binary compositions out of 125, based on predicted final area-specific-impedance, impedance rise, and final specific-capacity. Such machine learning-generated new additives outperform the initial dataset. This finding not only underscores the efficacy of machine learning in identifying materials in a highly complicated application space but also showcases an accelerated material discovery workflow that directly integrates data-driven methods with battery testing experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信