Nina A Moiseiwitsch, Sanika Pandit, Nicole Zwennes, Kimberly Nellenbach, Ana Sheridan, Jessica LeGrand, Eunice Chee, Sarah Ozawa, Brigid Troan, Wen Yih Aw, William Polacheck, Mansoor A Haider, Ashley C Brown
{"title":"胶体-纤维复合凝胶显示结构增强,次级纤维排列,改善血管愈合结果。","authors":"Nina A Moiseiwitsch, Sanika Pandit, Nicole Zwennes, Kimberly Nellenbach, Ana Sheridan, Jessica LeGrand, Eunice Chee, Sarah Ozawa, Brigid Troan, Wen Yih Aw, William Polacheck, Mansoor A Haider, Ashley C Brown","doi":"10.1038/s44172-025-00400-x","DOIUrl":null,"url":null,"abstract":"<p><p>Many biological tissues contain colloids within a fibrillar structure. Here, we develop and characterize colloidal-fibrillar scaffolds through examination of the effects of relative colloid and fiber ratios within a fibrin-based model system composed of fibrin-based nanoparticles (FBNs) within a natural fibrin scaffold. At lower concentrations, FBNs primarily integrate into the fibrillar fibrin matrix, strengthening it. At high concentrations, colloid-colloid interactions dominate and FBNs primarily form a highly aligned secondary structure that does not strengthen the fibrillar matrix. At intermediate concentrations, both reinforcement of the fibrin matrix and colloid-colloid interactions are observed. Our characterization of this colloidal-fibrillar system provides insight into new avenues for wound healing biomaterial development. Using structural and mechanical results, we developed a biomimetic surgical sealant. When applied to a vascular healing model, FBN gel resulted in improved vessel healing. This colloidal-fibrillar composite can greatly improve healing outcomes and should be applied to other tissues.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"67"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978784/pdf/","citationCount":"0","resultStr":"{\"title\":\"Colloidal-fibrillar composite gels demonstrate structural reinforcement, secondary fibrillar alignment, and improved vascular healing outcomes.\",\"authors\":\"Nina A Moiseiwitsch, Sanika Pandit, Nicole Zwennes, Kimberly Nellenbach, Ana Sheridan, Jessica LeGrand, Eunice Chee, Sarah Ozawa, Brigid Troan, Wen Yih Aw, William Polacheck, Mansoor A Haider, Ashley C Brown\",\"doi\":\"10.1038/s44172-025-00400-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many biological tissues contain colloids within a fibrillar structure. Here, we develop and characterize colloidal-fibrillar scaffolds through examination of the effects of relative colloid and fiber ratios within a fibrin-based model system composed of fibrin-based nanoparticles (FBNs) within a natural fibrin scaffold. At lower concentrations, FBNs primarily integrate into the fibrillar fibrin matrix, strengthening it. At high concentrations, colloid-colloid interactions dominate and FBNs primarily form a highly aligned secondary structure that does not strengthen the fibrillar matrix. At intermediate concentrations, both reinforcement of the fibrin matrix and colloid-colloid interactions are observed. Our characterization of this colloidal-fibrillar system provides insight into new avenues for wound healing biomaterial development. Using structural and mechanical results, we developed a biomimetic surgical sealant. When applied to a vascular healing model, FBN gel resulted in improved vessel healing. This colloidal-fibrillar composite can greatly improve healing outcomes and should be applied to other tissues.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00400-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00400-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Many biological tissues contain colloids within a fibrillar structure. Here, we develop and characterize colloidal-fibrillar scaffolds through examination of the effects of relative colloid and fiber ratios within a fibrin-based model system composed of fibrin-based nanoparticles (FBNs) within a natural fibrin scaffold. At lower concentrations, FBNs primarily integrate into the fibrillar fibrin matrix, strengthening it. At high concentrations, colloid-colloid interactions dominate and FBNs primarily form a highly aligned secondary structure that does not strengthen the fibrillar matrix. At intermediate concentrations, both reinforcement of the fibrin matrix and colloid-colloid interactions are observed. Our characterization of this colloidal-fibrillar system provides insight into new avenues for wound healing biomaterial development. Using structural and mechanical results, we developed a biomimetic surgical sealant. When applied to a vascular healing model, FBN gel resulted in improved vessel healing. This colloidal-fibrillar composite can greatly improve healing outcomes and should be applied to other tissues.