{"title":"基于地理信息系统和遥感的城市化对土地利用、土地覆被变化的影响——以埃塞俄比亚西南部米赞阿曼市为例","authors":"Addis Bikis, Muluye Engdaw, Digvijay Pandey, Binay Kumar Pandey","doi":"10.1038/s41598-025-94189-6","DOIUrl":null,"url":null,"abstract":"<p><p>Land use land cover change due to urbanization is the prime driving forces to environmental problem and land surface temperature. The gap of the study is the lack of awareness of stakeholders regarding the protection of native forests, fruit trees, and BEBEKA coffee plantations. Deforestation for urban functions, including timber production, construction materials, and firewood, adversely affects the environment. The aim of this study was to analyze the effect of urbanization on Land Use Land Cover Change (LULCC) at Mizan Aman city, southwest Ethiopia from 1992 to 2022 using geographic information systemand remote sensing technique. The study employed systematic sampling household surveys and high-resolution remote sensing techniques to identify the impact of urbanization on land use land cover change and land surface temperature change. Sample household survey was focused on family size, education level, parcel, year of construction of the house, type of employment and monthly household income. The LULC classification were based on eight land cover class (settlement, dense forest, moderate forest, sparse forest, closed grassland, open grassland, open shrub land, annual crop land). Preprocessing, classification of the images and accuracy assessment were tested separately using the kappa coefficient. The analysis incorporates factor graph optimization for ambiguity resolution. The results indicated that cumulative accuracy were 81.52%, 82.96%, 85.41% and 84.46% and kappa coefficient 82.41%, 84.86%, 89.45% and 88.76%% for the year 1992, 2002, 2012 and 2022 respectively. This research showed that dense forest, moderate forest, sparse forest and open shrub land were significantly decreased by 68.96%, 24.60%, 31.36% and 8.28% respectively in the last 30 years. Urban settlement were increased at alarming rate due to land demand for housing, infrastructure and manufacturing. Therefore, urban planners must prioritize sustainable environmental management, integrated land use zoning, and active community involvement in order to protect against unsustainable changes in land use and land cover. For future research, incorporating methodologies such as multi-source remote sensing and high-resolution imaging will help differentiate land cover more effectively. Mizan Aman City experiences a nine-month rainy season with a hot climate, and cloud cover can affect image quality, making it challenging to map land covers clearly. Utilizing SENTINEL high-resolution data can enhance ambiguity resolution and improve spatio-temporal monitoring frameworks. Furthermore, integrating CO<sub>2</sub> estimation techniques could offer deeper insights into the environmental changes associated with urbanization.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"12014"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of urbanization on land use land cover change using geographic information system and remote sensing: a case of Mizan Aman City Southwest Ethiopia.\",\"authors\":\"Addis Bikis, Muluye Engdaw, Digvijay Pandey, Binay Kumar Pandey\",\"doi\":\"10.1038/s41598-025-94189-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land use land cover change due to urbanization is the prime driving forces to environmental problem and land surface temperature. The gap of the study is the lack of awareness of stakeholders regarding the protection of native forests, fruit trees, and BEBEKA coffee plantations. Deforestation for urban functions, including timber production, construction materials, and firewood, adversely affects the environment. The aim of this study was to analyze the effect of urbanization on Land Use Land Cover Change (LULCC) at Mizan Aman city, southwest Ethiopia from 1992 to 2022 using geographic information systemand remote sensing technique. The study employed systematic sampling household surveys and high-resolution remote sensing techniques to identify the impact of urbanization on land use land cover change and land surface temperature change. Sample household survey was focused on family size, education level, parcel, year of construction of the house, type of employment and monthly household income. The LULC classification were based on eight land cover class (settlement, dense forest, moderate forest, sparse forest, closed grassland, open grassland, open shrub land, annual crop land). Preprocessing, classification of the images and accuracy assessment were tested separately using the kappa coefficient. The analysis incorporates factor graph optimization for ambiguity resolution. The results indicated that cumulative accuracy were 81.52%, 82.96%, 85.41% and 84.46% and kappa coefficient 82.41%, 84.86%, 89.45% and 88.76%% for the year 1992, 2002, 2012 and 2022 respectively. This research showed that dense forest, moderate forest, sparse forest and open shrub land were significantly decreased by 68.96%, 24.60%, 31.36% and 8.28% respectively in the last 30 years. Urban settlement were increased at alarming rate due to land demand for housing, infrastructure and manufacturing. Therefore, urban planners must prioritize sustainable environmental management, integrated land use zoning, and active community involvement in order to protect against unsustainable changes in land use and land cover. For future research, incorporating methodologies such as multi-source remote sensing and high-resolution imaging will help differentiate land cover more effectively. Mizan Aman City experiences a nine-month rainy season with a hot climate, and cloud cover can affect image quality, making it challenging to map land covers clearly. Utilizing SENTINEL high-resolution data can enhance ambiguity resolution and improve spatio-temporal monitoring frameworks. Furthermore, integrating CO<sub>2</sub> estimation techniques could offer deeper insights into the environmental changes associated with urbanization.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"12014\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94189-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94189-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The impact of urbanization on land use land cover change using geographic information system and remote sensing: a case of Mizan Aman City Southwest Ethiopia.
Land use land cover change due to urbanization is the prime driving forces to environmental problem and land surface temperature. The gap of the study is the lack of awareness of stakeholders regarding the protection of native forests, fruit trees, and BEBEKA coffee plantations. Deforestation for urban functions, including timber production, construction materials, and firewood, adversely affects the environment. The aim of this study was to analyze the effect of urbanization on Land Use Land Cover Change (LULCC) at Mizan Aman city, southwest Ethiopia from 1992 to 2022 using geographic information systemand remote sensing technique. The study employed systematic sampling household surveys and high-resolution remote sensing techniques to identify the impact of urbanization on land use land cover change and land surface temperature change. Sample household survey was focused on family size, education level, parcel, year of construction of the house, type of employment and monthly household income. The LULC classification were based on eight land cover class (settlement, dense forest, moderate forest, sparse forest, closed grassland, open grassland, open shrub land, annual crop land). Preprocessing, classification of the images and accuracy assessment were tested separately using the kappa coefficient. The analysis incorporates factor graph optimization for ambiguity resolution. The results indicated that cumulative accuracy were 81.52%, 82.96%, 85.41% and 84.46% and kappa coefficient 82.41%, 84.86%, 89.45% and 88.76%% for the year 1992, 2002, 2012 and 2022 respectively. This research showed that dense forest, moderate forest, sparse forest and open shrub land were significantly decreased by 68.96%, 24.60%, 31.36% and 8.28% respectively in the last 30 years. Urban settlement were increased at alarming rate due to land demand for housing, infrastructure and manufacturing. Therefore, urban planners must prioritize sustainable environmental management, integrated land use zoning, and active community involvement in order to protect against unsustainable changes in land use and land cover. For future research, incorporating methodologies such as multi-source remote sensing and high-resolution imaging will help differentiate land cover more effectively. Mizan Aman City experiences a nine-month rainy season with a hot climate, and cloud cover can affect image quality, making it challenging to map land covers clearly. Utilizing SENTINEL high-resolution data can enhance ambiguity resolution and improve spatio-temporal monitoring frameworks. Furthermore, integrating CO2 estimation techniques could offer deeper insights into the environmental changes associated with urbanization.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.