发育过度产生皮层浅表神经元损害成人听觉皮层加工。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mirna Merkler, Nancy Y Ip, Shuzo Sakata
{"title":"发育过度产生皮层浅表神经元损害成人听觉皮层加工。","authors":"Mirna Merkler, Nancy Y Ip, Shuzo Sakata","doi":"10.1038/s41598-025-95968-x","DOIUrl":null,"url":null,"abstract":"<p><p>While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11993"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental overproduction of cortical superficial neurons impairs adult auditory cortical processing.\",\"authors\":\"Mirna Merkler, Nancy Y Ip, Shuzo Sakata\",\"doi\":\"10.1038/s41598-025-95968-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11993\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95968-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95968-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然进化的皮质扩张被认为是人类认知能力进化的基础,但过度的发育扩张可能导致巨脑畸形,通常见于神经发育障碍。尽管如此,对于发育过程中皮质神经元的过量产生如何影响以后生活中的皮质处理和行为,我们知之甚少。在这里,我们表明发育过度生产皮层浅表神经元损害听觉加工在成年小鼠。我们在发育过程中应用XAV939过量产生皮层浅表兴奋性神经元。xav939处理的成年小鼠表现出听觉行为缺陷和听觉皮质加工异常。此外,我们还发现皮质性兴奋神经元之间的功能性单突触连接较少。总之,我们的研究结果表明,听觉皮质加工异常有助于xav939治疗小鼠的非典型听觉可检测性。虽然皮质尺寸的扩张在进化上是有利的,但发育过程中的异常扩张可能会对成年后的皮质加工和感知行为产生不利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developmental overproduction of cortical superficial neurons impairs adult auditory cortical processing.

While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信