{"title":"发育过度产生皮层浅表神经元损害成人听觉皮层加工。","authors":"Mirna Merkler, Nancy Y Ip, Shuzo Sakata","doi":"10.1038/s41598-025-95968-x","DOIUrl":null,"url":null,"abstract":"<p><p>While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11993"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developmental overproduction of cortical superficial neurons impairs adult auditory cortical processing.\",\"authors\":\"Mirna Merkler, Nancy Y Ip, Shuzo Sakata\",\"doi\":\"10.1038/s41598-025-95968-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11993\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95968-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95968-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in later life. Here we show that developmental overproduction of cortical superficial neurons impairs auditory processing in adult mice. We applied XAV939 to overproduce cortical superficial excitatory neurons during development. XAV939-treated adult mice exhibited auditory behavioral deficits and abnormal auditory cortical processing. Furthermore, we found fewer functional monosynaptic connections between cortical putative excitatory neurons. Altogether, our results suggest that abnormal auditory cortical processing contributes to the atypical auditory detectability in XAV939-treated mice. Although the expansion of cortical size is evolutionarily advantageous, an abnormal expansion during development can result in detrimental effects on cortical processing and perceptual behavior in adulthood.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.