Massimiliano Marino, Martin J Baptist, Ahmad I K Alkharoubi, Sofia Nasca, Luca Cavallaro, Enrico Foti, Rosaria Ester Musumeci
{"title":"基于自然的解决方案作为减少沿海洪水风险的基石:基于模型的生态系统服务评估。","authors":"Massimiliano Marino, Martin J Baptist, Ahmad I K Alkharoubi, Sofia Nasca, Luca Cavallaro, Enrico Foti, Rosaria Ester Musumeci","doi":"10.1038/s41598-025-95230-4","DOIUrl":null,"url":null,"abstract":"<p><p>Nature-based Solutions (NbS) are increasingly recognized as effective measures for mitigating flood risks and enhancing climate change adaptation. However, evaluating their efficacy in delivering flood risk reduction ecosystem service (FRR-ESS) is usually limited by reliance on qualitative, expert-based \"quick-scan\" scoring methods. While already challenging for present-day evaluations, this limitation becomes even more significant when addressing future climate scenarios, introducing deep uncertainties in the evaluation. The present study introduces a model-based framework to quantify FRR-ESS provided by coastal NbS, which integrates expert-based assessments with quantitative results from an eco-hydro-morphodynamic numerical model. The model enables a comparative evaluation of individual and combined effects of NbS following a Building Blocks approach. By integrating habitat map change prediction in the evaluation, NbS flood reduction response to present and future storm scenarios (i.e. wave climate and sea level rise) are investigated. The methodology is applied to a Mediterranean coastal lagoon in Sicily (Italy), and can be easily adapted to diverse coastal ecosystems. Our findings underscore the significant role of coastal habitats in reducing flood risk and highlight the importance of integrating physically-based modelling into FRR-ESS evaluation. This approach provides a robust and flexible tool for policymakers and stakeholders to make informed decisions that support both ecological sustainability and disaster risk reduction.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"12070"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature-based Solutions as Building Blocks for coastal flood risk reduction: a model-based ecosystem service assessment.\",\"authors\":\"Massimiliano Marino, Martin J Baptist, Ahmad I K Alkharoubi, Sofia Nasca, Luca Cavallaro, Enrico Foti, Rosaria Ester Musumeci\",\"doi\":\"10.1038/s41598-025-95230-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nature-based Solutions (NbS) are increasingly recognized as effective measures for mitigating flood risks and enhancing climate change adaptation. However, evaluating their efficacy in delivering flood risk reduction ecosystem service (FRR-ESS) is usually limited by reliance on qualitative, expert-based \\\"quick-scan\\\" scoring methods. While already challenging for present-day evaluations, this limitation becomes even more significant when addressing future climate scenarios, introducing deep uncertainties in the evaluation. The present study introduces a model-based framework to quantify FRR-ESS provided by coastal NbS, which integrates expert-based assessments with quantitative results from an eco-hydro-morphodynamic numerical model. The model enables a comparative evaluation of individual and combined effects of NbS following a Building Blocks approach. By integrating habitat map change prediction in the evaluation, NbS flood reduction response to present and future storm scenarios (i.e. wave climate and sea level rise) are investigated. The methodology is applied to a Mediterranean coastal lagoon in Sicily (Italy), and can be easily adapted to diverse coastal ecosystems. Our findings underscore the significant role of coastal habitats in reducing flood risk and highlight the importance of integrating physically-based modelling into FRR-ESS evaluation. This approach provides a robust and flexible tool for policymakers and stakeholders to make informed decisions that support both ecological sustainability and disaster risk reduction.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"12070\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95230-4\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95230-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Nature-based Solutions as Building Blocks for coastal flood risk reduction: a model-based ecosystem service assessment.
Nature-based Solutions (NbS) are increasingly recognized as effective measures for mitigating flood risks and enhancing climate change adaptation. However, evaluating their efficacy in delivering flood risk reduction ecosystem service (FRR-ESS) is usually limited by reliance on qualitative, expert-based "quick-scan" scoring methods. While already challenging for present-day evaluations, this limitation becomes even more significant when addressing future climate scenarios, introducing deep uncertainties in the evaluation. The present study introduces a model-based framework to quantify FRR-ESS provided by coastal NbS, which integrates expert-based assessments with quantitative results from an eco-hydro-morphodynamic numerical model. The model enables a comparative evaluation of individual and combined effects of NbS following a Building Blocks approach. By integrating habitat map change prediction in the evaluation, NbS flood reduction response to present and future storm scenarios (i.e. wave climate and sea level rise) are investigated. The methodology is applied to a Mediterranean coastal lagoon in Sicily (Italy), and can be easily adapted to diverse coastal ecosystems. Our findings underscore the significant role of coastal habitats in reducing flood risk and highlight the importance of integrating physically-based modelling into FRR-ESS evaluation. This approach provides a robust and flexible tool for policymakers and stakeholders to make informed decisions that support both ecological sustainability and disaster risk reduction.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.