Erdi Can Aytar, Emine Incilay Torunoglu, Abidin Gümrükçüoğlu, Alper Durmaz, Saleh Al-Farraj, Mika Sillanpää
{"title":"气相色谱-质谱联用和高效液相色谱联用对海绵竹的化学性质和抗氧化活性进行对接分析。","authors":"Erdi Can Aytar, Emine Incilay Torunoglu, Abidin Gümrükçüoğlu, Alper Durmaz, Saleh Al-Farraj, Mika Sillanpää","doi":"10.1038/s41598-025-94887-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the phytochemical composition, antioxidant activity, and potential biological applications of the methanol extract obtained from the above ground of Cakile maritima. Antioxidant analyses revealed DPPH IC₅₀ = 642.52 ± 29.68 mg/mL, FRAP radical scavenging activity = 1093.89 ± 17.68 mg/mL, and ferrous ion chelation activity IC₅₀ = 68.51 ± 1.53 mg/mL. The total phenolic and flavonoid contents were determined as 32.23 ± 1.97 mg GAE/g and 32.02 ± 5.64 mg QE/g, respectively. GC-MS analysis identified significant compounds such as 1H-imidazole, 4,5-dimethyl (9.94%) and dianhydromannitol (8.84%), highlighting their antioxidant and biomedical potential. Phenolic profiling was performed using HPLC, revealing dominant compounds such as gallic acid (407.93 mg/L) and pyrogallol (579.9 mg/L), while rutin (219.6 mg/L) emerged as the most abundant flavonoid. Molecular docking studies indicated that rutin is the strongest inhibitor of the target protein (ΔG = -9.1 kcal/mol, Ki = 0.00467 μM), supported by its strong binding interactions. Acute toxicity evaluations revealed low to moderate toxicity for most compounds, with dianhydromannitol showing higher toxicity (LD₅₀ = 8 mg/kg). Cytotoxicity predictions demonstrated significant antitumor potential of compounds such as pyridine, dianhydromannitol, and 1H-imidazole, 4,5-dimethyl against various cancer cell lines, including brain gliomas and colon adenocarcinomas. These findings highlight the rich chemical diversity and promising therapeutic potential of C. maritima extract.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11937"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular docking analyses on the chemical profile and antioxidant potential of Cakile maritima using GC-MS and HPLC.\",\"authors\":\"Erdi Can Aytar, Emine Incilay Torunoglu, Abidin Gümrükçüoğlu, Alper Durmaz, Saleh Al-Farraj, Mika Sillanpää\",\"doi\":\"10.1038/s41598-025-94887-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the phytochemical composition, antioxidant activity, and potential biological applications of the methanol extract obtained from the above ground of Cakile maritima. Antioxidant analyses revealed DPPH IC₅₀ = 642.52 ± 29.68 mg/mL, FRAP radical scavenging activity = 1093.89 ± 17.68 mg/mL, and ferrous ion chelation activity IC₅₀ = 68.51 ± 1.53 mg/mL. The total phenolic and flavonoid contents were determined as 32.23 ± 1.97 mg GAE/g and 32.02 ± 5.64 mg QE/g, respectively. GC-MS analysis identified significant compounds such as 1H-imidazole, 4,5-dimethyl (9.94%) and dianhydromannitol (8.84%), highlighting their antioxidant and biomedical potential. Phenolic profiling was performed using HPLC, revealing dominant compounds such as gallic acid (407.93 mg/L) and pyrogallol (579.9 mg/L), while rutin (219.6 mg/L) emerged as the most abundant flavonoid. Molecular docking studies indicated that rutin is the strongest inhibitor of the target protein (ΔG = -9.1 kcal/mol, Ki = 0.00467 μM), supported by its strong binding interactions. Acute toxicity evaluations revealed low to moderate toxicity for most compounds, with dianhydromannitol showing higher toxicity (LD₅₀ = 8 mg/kg). Cytotoxicity predictions demonstrated significant antitumor potential of compounds such as pyridine, dianhydromannitol, and 1H-imidazole, 4,5-dimethyl against various cancer cell lines, including brain gliomas and colon adenocarcinomas. These findings highlight the rich chemical diversity and promising therapeutic potential of C. maritima extract.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"11937\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94887-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94887-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Molecular docking analyses on the chemical profile and antioxidant potential of Cakile maritima using GC-MS and HPLC.
This study investigates the phytochemical composition, antioxidant activity, and potential biological applications of the methanol extract obtained from the above ground of Cakile maritima. Antioxidant analyses revealed DPPH IC₅₀ = 642.52 ± 29.68 mg/mL, FRAP radical scavenging activity = 1093.89 ± 17.68 mg/mL, and ferrous ion chelation activity IC₅₀ = 68.51 ± 1.53 mg/mL. The total phenolic and flavonoid contents were determined as 32.23 ± 1.97 mg GAE/g and 32.02 ± 5.64 mg QE/g, respectively. GC-MS analysis identified significant compounds such as 1H-imidazole, 4,5-dimethyl (9.94%) and dianhydromannitol (8.84%), highlighting their antioxidant and biomedical potential. Phenolic profiling was performed using HPLC, revealing dominant compounds such as gallic acid (407.93 mg/L) and pyrogallol (579.9 mg/L), while rutin (219.6 mg/L) emerged as the most abundant flavonoid. Molecular docking studies indicated that rutin is the strongest inhibitor of the target protein (ΔG = -9.1 kcal/mol, Ki = 0.00467 μM), supported by its strong binding interactions. Acute toxicity evaluations revealed low to moderate toxicity for most compounds, with dianhydromannitol showing higher toxicity (LD₅₀ = 8 mg/kg). Cytotoxicity predictions demonstrated significant antitumor potential of compounds such as pyridine, dianhydromannitol, and 1H-imidazole, 4,5-dimethyl against various cancer cell lines, including brain gliomas and colon adenocarcinomas. These findings highlight the rich chemical diversity and promising therapeutic potential of C. maritima extract.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.