{"title":"自身免疫凝血因子缺乏中的自身抗体:日本实践中抑制和加速清除机制的综述。","authors":"Akitada Ichinose","doi":"10.1055/a-2576-5019","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune acquired coagulation factor deficiency (AiCFD) represents a rare coagulation disorder that primarily affects older people and sometimes causes fatal bleeding; therefore, clinicians need to consider this when encountering patients with unexplained bleeding. AiCFD is caused by the production of autoantibodies against one's own coagulation factor, which markedly inhibit its function, or accelerate its clearance from plasma, resulting in hemostatic failure. The plasma of affected patients shows various abnormal findings, because anti-coagulation factor-autoantibodies are polyclonal, and each clone has differing properties. First, inhibitor type autoantibodies target the functional sites of coagulation factors, thereby considerably reducing their activity. Second, clearance-accelerating autoantibodies bind to non-functional sites and cause rapid removal of coagulation factors from the blood, thereby reducing their levels (and their activity in parallel). Third, mixed type autoantibodies (inhibitory clearance-accelerating) substantially reduce coagulation factor activity and level to various degrees. Most anti-coagulation factor-autoantibodies are inhibitory clearance-accelerating types, although pure inhibitor types remain clinically significant; however, the pure clearance-accelerating type appears to be rare, possibly because the autoantibody is not detected unless it exceeds the level of the target coagulation factor (pseudo-autoantibody negative). Moreover, anti-factor XIII-autoantibodies are particularly complex, as they interfere with the A subunit (Aa type), its activated form (Ab type), and/or the B subunit (B type). Of the three types, Aa type anti-factor XIII-autoantibodies contain a mixture of different inhibitor type autoantibodies in various ratios in plasma, resulting in an extremely diverse range of test findings. Therefore, care must be taken when diagnosing and assessing the efficacy of treatment.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoantibodies in Autoimmune Coagulation Factor Deficiencies: A Review of Inhibitory and Clearance-Accelerating Mechanisms from Japanese practice.\",\"authors\":\"Akitada Ichinose\",\"doi\":\"10.1055/a-2576-5019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoimmune acquired coagulation factor deficiency (AiCFD) represents a rare coagulation disorder that primarily affects older people and sometimes causes fatal bleeding; therefore, clinicians need to consider this when encountering patients with unexplained bleeding. AiCFD is caused by the production of autoantibodies against one's own coagulation factor, which markedly inhibit its function, or accelerate its clearance from plasma, resulting in hemostatic failure. The plasma of affected patients shows various abnormal findings, because anti-coagulation factor-autoantibodies are polyclonal, and each clone has differing properties. First, inhibitor type autoantibodies target the functional sites of coagulation factors, thereby considerably reducing their activity. Second, clearance-accelerating autoantibodies bind to non-functional sites and cause rapid removal of coagulation factors from the blood, thereby reducing their levels (and their activity in parallel). Third, mixed type autoantibodies (inhibitory clearance-accelerating) substantially reduce coagulation factor activity and level to various degrees. Most anti-coagulation factor-autoantibodies are inhibitory clearance-accelerating types, although pure inhibitor types remain clinically significant; however, the pure clearance-accelerating type appears to be rare, possibly because the autoantibody is not detected unless it exceeds the level of the target coagulation factor (pseudo-autoantibody negative). Moreover, anti-factor XIII-autoantibodies are particularly complex, as they interfere with the A subunit (Aa type), its activated form (Ab type), and/or the B subunit (B type). Of the three types, Aa type anti-factor XIII-autoantibodies contain a mixture of different inhibitor type autoantibodies in various ratios in plasma, resulting in an extremely diverse range of test findings. Therefore, care must be taken when diagnosing and assessing the efficacy of treatment.</p>\",\"PeriodicalId\":21673,\"journal\":{\"name\":\"Seminars in thrombosis and hemostasis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in thrombosis and hemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2576-5019\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in thrombosis and hemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2576-5019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Autoantibodies in Autoimmune Coagulation Factor Deficiencies: A Review of Inhibitory and Clearance-Accelerating Mechanisms from Japanese practice.
Autoimmune acquired coagulation factor deficiency (AiCFD) represents a rare coagulation disorder that primarily affects older people and sometimes causes fatal bleeding; therefore, clinicians need to consider this when encountering patients with unexplained bleeding. AiCFD is caused by the production of autoantibodies against one's own coagulation factor, which markedly inhibit its function, or accelerate its clearance from plasma, resulting in hemostatic failure. The plasma of affected patients shows various abnormal findings, because anti-coagulation factor-autoantibodies are polyclonal, and each clone has differing properties. First, inhibitor type autoantibodies target the functional sites of coagulation factors, thereby considerably reducing their activity. Second, clearance-accelerating autoantibodies bind to non-functional sites and cause rapid removal of coagulation factors from the blood, thereby reducing their levels (and their activity in parallel). Third, mixed type autoantibodies (inhibitory clearance-accelerating) substantially reduce coagulation factor activity and level to various degrees. Most anti-coagulation factor-autoantibodies are inhibitory clearance-accelerating types, although pure inhibitor types remain clinically significant; however, the pure clearance-accelerating type appears to be rare, possibly because the autoantibody is not detected unless it exceeds the level of the target coagulation factor (pseudo-autoantibody negative). Moreover, anti-factor XIII-autoantibodies are particularly complex, as they interfere with the A subunit (Aa type), its activated form (Ab type), and/or the B subunit (B type). Of the three types, Aa type anti-factor XIII-autoantibodies contain a mixture of different inhibitor type autoantibodies in various ratios in plasma, resulting in an extremely diverse range of test findings. Therefore, care must be taken when diagnosing and assessing the efficacy of treatment.
期刊介绍:
Seminars in Thrombosis and Hemostasis is a topic driven review journal that focuses on all issues relating to hemostatic and thrombotic disorders. As one of the premiere review journals in the field, Seminars in Thrombosis and Hemostasis serves as a comprehensive forum for important advances in clinical and laboratory diagnosis and therapeutic interventions. The journal also publishes peer reviewed original research papers.
Seminars offers an informed perspective on today''s pivotal issues, including hemophilia A & B, thrombophilia, gene therapy, venous and arterial thrombosis, von Willebrand disease, vascular disorders and thromboembolic diseases. Attention is also given to the latest developments in pharmaceutical drugs along with treatment and current management techniques. The journal also frequently publishes sponsored supplements to further highlight emerging trends in the field.