青蒿素在动脉粥样硬化进展中的新作用。

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Phytotherapy Research Pub Date : 2025-04-01 Epub Date: 2025-04-08 DOI:10.1002/ptr.8483
Hamidreza Majidiani, Maryam Musavi, Amir Abbas Momtazi-Borojeni
{"title":"青蒿素在动脉粥样硬化进展中的新作用。","authors":"Hamidreza Majidiani, Maryam Musavi, Amir Abbas Momtazi-Borojeni","doi":"10.1002/ptr.8483","DOIUrl":null,"url":null,"abstract":"<p><p>Artemisinin is a natural compound derived from the Chinese plant Artemisia annua , which was officially approved by the FDA for its antimalarial effects. In recent years, a growing body of studies has shown the novel function of artemisinin in atherosclerosis therapy. In vivo studies have shown that artemisinin can inhibit the progression of atherosclerosis plaque. In the present review, the evidence showing the inhibitory effects of artemisinin on the progression of atherosclerosis plaque and its underlying mechanisms is discussed. Mechanistically, artemisinin and its derivatives act by modulating various atherosclerosis-mediating risk factors, including hyperlipidemia, inflammation, oxidative stress, and malfunctioning vascular smooth muscle cells (VSMCs). Notably, artesunate, but not artemisinin, can attenuate the plasma levels of TG, TC, VLDL-C, and LDL-c, along with a substantial decline in arterial lipid deposition through enhancing the LDPL activity via inducing the KFL2/NRF2/TCF7L2 axis. Artemisinin was found to ameliorate the atherosclerosis plaque inflammation by reducing monocyte adhesion and subsequent transmigration to the intima, via inhibiting the expression of ICAM-1 and VCAM-1, diminishing NLRP3 inflammasome activation, and reducing the expression of inflammatory factors such as IL-1β, IL-18, TNF-α, MCP-1, and TGF-β1 mechanistically and mainly via suppressing the by NF-κB activity. Artemisinin could exert antioxidant effects through activating the PI3K/Akt/eNOS signaling pathway and suppressing the ROS-mediated NF-κB signal pathway. Artemisinin could also improve the VSMC function in the atherosclerosis plaque. These findings can suggest artemisinin as a new therapeutic agent for treating atherosclerosis; however, future clinical trials are warranted to validate its therapeutic efficiency in patients with atherosclerosis.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"1847-1857"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Roles of Artemisinins in Atherosclerosis Progression.\",\"authors\":\"Hamidreza Majidiani, Maryam Musavi, Amir Abbas Momtazi-Borojeni\",\"doi\":\"10.1002/ptr.8483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artemisinin is a natural compound derived from the Chinese plant Artemisia annua , which was officially approved by the FDA for its antimalarial effects. In recent years, a growing body of studies has shown the novel function of artemisinin in atherosclerosis therapy. In vivo studies have shown that artemisinin can inhibit the progression of atherosclerosis plaque. In the present review, the evidence showing the inhibitory effects of artemisinin on the progression of atherosclerosis plaque and its underlying mechanisms is discussed. Mechanistically, artemisinin and its derivatives act by modulating various atherosclerosis-mediating risk factors, including hyperlipidemia, inflammation, oxidative stress, and malfunctioning vascular smooth muscle cells (VSMCs). Notably, artesunate, but not artemisinin, can attenuate the plasma levels of TG, TC, VLDL-C, and LDL-c, along with a substantial decline in arterial lipid deposition through enhancing the LDPL activity via inducing the KFL2/NRF2/TCF7L2 axis. Artemisinin was found to ameliorate the atherosclerosis plaque inflammation by reducing monocyte adhesion and subsequent transmigration to the intima, via inhibiting the expression of ICAM-1 and VCAM-1, diminishing NLRP3 inflammasome activation, and reducing the expression of inflammatory factors such as IL-1β, IL-18, TNF-α, MCP-1, and TGF-β1 mechanistically and mainly via suppressing the by NF-κB activity. Artemisinin could exert antioxidant effects through activating the PI3K/Akt/eNOS signaling pathway and suppressing the ROS-mediated NF-κB signal pathway. Artemisinin could also improve the VSMC function in the atherosclerosis plaque. These findings can suggest artemisinin as a new therapeutic agent for treating atherosclerosis; however, future clinical trials are warranted to validate its therapeutic efficiency in patients with atherosclerosis.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"1847-1857\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8483\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8483","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

青蒿素是一种从中国植物黄花蒿中提取的天然化合物,因其抗疟疾作用已被FDA正式批准。近年来,越来越多的研究显示了青蒿素在动脉粥样硬化治疗中的新功能。体内研究表明,青蒿素可以抑制动脉粥样硬化斑块的进展。本文就青蒿素抑制动脉粥样硬化斑块进展的证据及其机制进行综述。机制上,青蒿素及其衍生物通过调节各种动脉粥样硬化介导的危险因素起作用,包括高脂血症、炎症、氧化应激和血管平滑肌细胞(VSMCs)功能障碍。值得注意的是,青蒿琥酯可以通过诱导KFL2/NRF2/TCF7L2轴增强LDPL活性,降低血浆TG、TC、VLDL-C和LDL-c水平,并显著降低动脉脂质沉积,而青蒿素则没有作用。研究发现,青蒿素通过抑制ICAM-1和VCAM-1的表达,降低NLRP3炎性小体的活化,降低IL-1β、IL-18、TNF-α、MCP-1、TGF-β1等炎症因子的表达,主要通过抑制NF-κB活性,通过减少单核细胞粘附并随后向内膜迁移来改善动脉粥样硬化斑块炎症。青蒿素通过激活PI3K/Akt/eNOS信号通路,抑制ros介导的NF-κB信号通路发挥抗氧化作用。青蒿素还能改善动脉粥样硬化斑块的VSMC功能。这些发现提示青蒿素是一种治疗动脉粥样硬化的新药物;然而,需要进一步的临床试验来验证其对动脉粥样硬化患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Roles of Artemisinins in Atherosclerosis Progression.

Artemisinin is a natural compound derived from the Chinese plant Artemisia annua , which was officially approved by the FDA for its antimalarial effects. In recent years, a growing body of studies has shown the novel function of artemisinin in atherosclerosis therapy. In vivo studies have shown that artemisinin can inhibit the progression of atherosclerosis plaque. In the present review, the evidence showing the inhibitory effects of artemisinin on the progression of atherosclerosis plaque and its underlying mechanisms is discussed. Mechanistically, artemisinin and its derivatives act by modulating various atherosclerosis-mediating risk factors, including hyperlipidemia, inflammation, oxidative stress, and malfunctioning vascular smooth muscle cells (VSMCs). Notably, artesunate, but not artemisinin, can attenuate the plasma levels of TG, TC, VLDL-C, and LDL-c, along with a substantial decline in arterial lipid deposition through enhancing the LDPL activity via inducing the KFL2/NRF2/TCF7L2 axis. Artemisinin was found to ameliorate the atherosclerosis plaque inflammation by reducing monocyte adhesion and subsequent transmigration to the intima, via inhibiting the expression of ICAM-1 and VCAM-1, diminishing NLRP3 inflammasome activation, and reducing the expression of inflammatory factors such as IL-1β, IL-18, TNF-α, MCP-1, and TGF-β1 mechanistically and mainly via suppressing the by NF-κB activity. Artemisinin could exert antioxidant effects through activating the PI3K/Akt/eNOS signaling pathway and suppressing the ROS-mediated NF-κB signal pathway. Artemisinin could also improve the VSMC function in the atherosclerosis plaque. These findings can suggest artemisinin as a new therapeutic agent for treating atherosclerosis; however, future clinical trials are warranted to validate its therapeutic efficiency in patients with atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信