Jin Zhang, Zicheng Tan, Qishu Qin, Hongzhe Peng, Wenjie Shi, Haiyan Yu, Bo Dong
{"title":"综合多组学鉴定海鞘脊索放光发生的关键信号通路。","authors":"Jin Zhang, Zicheng Tan, Qishu Qin, Hongzhe Peng, Wenjie Shi, Haiyan Yu, Bo Dong","doi":"10.1098/rsob.240402","DOIUrl":null,"url":null,"abstract":"<p><p>Lumen formation and inflation are crucial for tubular organ morphogenesis and function. However, the key signalling pathways for lumenogenesis regulation were not well identified. Here, we performed tissue-specific transcriptomic sequencing for the isolated <i>Ciona</i> notochord tissue, in which 10 551 genes in total were identified. To investigate crucial signalling pathways in regulating lumenogenesis, KEGG was performed and the results showed that the Rap1 signalling pathway, vascular endothelial growth factor signalling pathway, mitogen activated protein kinase (MAPK) signalling pathway (plant) and Ras signalling pathway might play important roles in lumenogenesis. Moreover, correlation analysis with proteomic data and comparison analysis of single-cell transcriptomic data were further utilized to identify the potential critical roles of the Rap1 signalling pathway and Ras signalling pathway in lumenogenesis. To verify their functions in lumenogenesis, the Ras/calcium-Rap1-MAPK signalling axis was blocked, and the results showed that the notochord lumenogenesis failed. Meanwhile, we identified that CDC42 was a potential downstream target factor of the Ras-Rap1-MAPK signalling axis, playing crucial functions in notochord lumenogenesis. Overall, we systematically revealed the key regulatory signalling pathways for notochord lumen formation and verified a lumenogenesis-related signalling axis, providing a foundational data resource for exploring the mechanisms of lumenogenesis.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 4","pages":"240402"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated multi-omics identify key signalling pathways for notochord lumenogenesis in ascidian <i>Ciona savignyi</i>.\",\"authors\":\"Jin Zhang, Zicheng Tan, Qishu Qin, Hongzhe Peng, Wenjie Shi, Haiyan Yu, Bo Dong\",\"doi\":\"10.1098/rsob.240402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lumen formation and inflation are crucial for tubular organ morphogenesis and function. However, the key signalling pathways for lumenogenesis regulation were not well identified. Here, we performed tissue-specific transcriptomic sequencing for the isolated <i>Ciona</i> notochord tissue, in which 10 551 genes in total were identified. To investigate crucial signalling pathways in regulating lumenogenesis, KEGG was performed and the results showed that the Rap1 signalling pathway, vascular endothelial growth factor signalling pathway, mitogen activated protein kinase (MAPK) signalling pathway (plant) and Ras signalling pathway might play important roles in lumenogenesis. Moreover, correlation analysis with proteomic data and comparison analysis of single-cell transcriptomic data were further utilized to identify the potential critical roles of the Rap1 signalling pathway and Ras signalling pathway in lumenogenesis. To verify their functions in lumenogenesis, the Ras/calcium-Rap1-MAPK signalling axis was blocked, and the results showed that the notochord lumenogenesis failed. Meanwhile, we identified that CDC42 was a potential downstream target factor of the Ras-Rap1-MAPK signalling axis, playing crucial functions in notochord lumenogenesis. Overall, we systematically revealed the key regulatory signalling pathways for notochord lumen formation and verified a lumenogenesis-related signalling axis, providing a foundational data resource for exploring the mechanisms of lumenogenesis.</p>\",\"PeriodicalId\":19629,\"journal\":{\"name\":\"Open Biology\",\"volume\":\"15 4\",\"pages\":\"240402\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsob.240402\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240402","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Integrated multi-omics identify key signalling pathways for notochord lumenogenesis in ascidian Ciona savignyi.
Lumen formation and inflation are crucial for tubular organ morphogenesis and function. However, the key signalling pathways for lumenogenesis regulation were not well identified. Here, we performed tissue-specific transcriptomic sequencing for the isolated Ciona notochord tissue, in which 10 551 genes in total were identified. To investigate crucial signalling pathways in regulating lumenogenesis, KEGG was performed and the results showed that the Rap1 signalling pathway, vascular endothelial growth factor signalling pathway, mitogen activated protein kinase (MAPK) signalling pathway (plant) and Ras signalling pathway might play important roles in lumenogenesis. Moreover, correlation analysis with proteomic data and comparison analysis of single-cell transcriptomic data were further utilized to identify the potential critical roles of the Rap1 signalling pathway and Ras signalling pathway in lumenogenesis. To verify their functions in lumenogenesis, the Ras/calcium-Rap1-MAPK signalling axis was blocked, and the results showed that the notochord lumenogenesis failed. Meanwhile, we identified that CDC42 was a potential downstream target factor of the Ras-Rap1-MAPK signalling axis, playing crucial functions in notochord lumenogenesis. Overall, we systematically revealed the key regulatory signalling pathways for notochord lumen formation and verified a lumenogenesis-related signalling axis, providing a foundational data resource for exploring the mechanisms of lumenogenesis.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.